Research on the Navier-Stokes equations by interpolation spaces and perturbation theory.

利用插值空间和微扰理论研究纳维-斯托克斯方程。

基本信息

  • 批准号:
    09640164
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We studied the existence, the uniqueness and the stability of stationary solutions of the Navier-Stokes equations in exterior domains, which is regarded as a model describing the motion of fluids, by functional analytic methods.For n-dimensional spaces, the function space L^n is mainly employed in previous works on this direction. We showed during the period from April, 1997 to March, 1998 that, when the space dimension is 3, solutions in the function space L^3 exist only in very limited cases, and hence we must consider a some-what larger space L^<3, *> as the function space in which solutions exist. Moreover, for the Navier-Stokes equation in the whole space, we gave a condition on the external forces sufficient for the unique existence of small stationary solutions belonging to the Morrey spaces, which is strictly larger than the space L^<n, *>. We furthermore showed that the stationay solutions above are stable under small initial perturbation in function spaces which contain distributions other than Radon measures.We studied the exterior problem of the Navier-Stokes equations in the space for n<greater than or equal>3 during the period from April, 1998 to March, 1999. We then showed the unique existence of small stationary solutions in the function space under the condition that the external forces are given as the first order derivatives of potentials small in the function space L^<n/2, *>. We also showed that the stationary solutions above are stable under small initial perturbations in the function space L^<n, *>. This result is applicable to external forces more general than those which can be treated by previous results obtained by potential theoretical methods, and is applicable to the 3-dimensional case which could not be treated by functional analytic methods before.
用泛函分析的方法研究了描述流体运动的N-S方程在外部区域的定常解的存在性、唯一性和稳定性,对于n维空间,前人在这方面的工作主要采用函数空间L^n。在1997年4月到1998年3月期间,我们证明了当空间维为3时,函数空间L^3中的解只在非常有限的情况下存在,因此我们必须考虑一个更大的空间L^3,*>作为存在解的函数空间。此外,对于全空间中的N-S方程,我们给出了严格大于L^&lt;n,*&gt;的Morrey空间中存在唯一小驻定解的外力充分条件。我们进一步证明了在含有非Radon测度分布的函数空间中,上述驻点解在小初始扰动下是稳定的。我们在1998年4月至1999年3月期间研究了n&lt;大于或等于&gt;3的空间中的Navier-Stokes方程的外问题。然后证明了当外力为函数空间L^&lt;n/2,*&gt;中的势的一阶导数时,函数空间中存在唯一的小定常解。我们还证明了在函数空间L^&lt;n,*&gt;中,上述定常解在小初始扰动下是稳定的。这一结果适用于更一般的外力,而不是以前用势论方法得到的结果所能处理的外力,也适用于以前用泛函分析方法无法处理的三维情况。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kozono, H.: "On a large class of stable solutions to the Navier-Stokes equations in exterior domains" Math.Z.228. 751-785 (1998)
Kozono, H.:“关于外部域中纳维-斯托克斯方程的一大类稳定解”Math.Z.228。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono, H.: "Exterior problem for the Navier-Stokes equations, existance, uniqueness and stability of stationary solutions" Proc.third Int.Conf.at Oberwolfach. 86-98 (1998)
Kozono, H.:“纳维-斯托克斯方程的外部问题、平稳解的存在性、唯一性和稳定性”Proc.third Int.Conf.at Oberwolfach。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kozono and M.Yamazaki: "On a larger class of stable solutions to the Navier-Stokes equations in exterior domains" Math.Z.228. 751-785 (1998)
H.Kozono 和 M.Yamazaki:“关于外部域中纳维-斯托克斯方程的一大类稳定解”Math.Z.228。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kozono, H.Sohn, M.Yamazaki: "Representation formula,net force and energy relation to the stationary Navier-Stokes equatime Ln 3-dimensional exterior domains" Kyushu Journal of Mathematics. 51. 239-260 (1997)
H.Kozono、H.Sohn、M.Yamazaki:“3 维外部域中静止纳维-斯托克斯赤道时的表示公式、净力和能量关系”九州数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kozono, H.: "The Navier-Stokes equation with distributions as initial data and application to self-similar solutions" Proc.Conf.New Trends in Microlocal Analysis. 125-141 (1997)
Kozono, H.:“以分布作为初始数据的纳维-斯托克斯方程及其在自相似解中的应用”Proc.Conf.微局部分析的新趋势。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAZAKI Masao其他文献

Preparation of Glycolether Lignin from <i>Sugi</i> (<i>Cryptomeria japonica</i> D. Don) Woodmeal by Acid-Catalyzed Solvolysis and Preparation of Heat-Resistant Polyester from the Glycolether Lignin
酸催化溶剂分解杉木粉制备乙二醇醚木质素及其制备耐热聚酯

YAMAZAKI Masao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAZAKI Masao', 18)}}的其他基金

Study on the Navier-Stokes equations on unbounded domains by way of real analysis
无界域纳维-斯托克斯方程的实分析研究
  • 批准号:
    21540202
  • 财政年份:
    2009
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of the Navier-Stokes exterior problem by using dual semigmups and the Lorentz spaces
利用对偶半映射和洛伦兹空间研究纳维-斯托克斯外问题
  • 批准号:
    13640157
  • 财政年份:
    2001
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of the Navier-Stokes equations by using the theory of Fourier analysis and semigroup theory
利用傅立叶分析和半群理论研究纳维-斯托克斯方程
  • 批准号:
    11640156
  • 财政年份:
    1999
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
  • 批准号:
    23K03176
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification of the multi-layered structure of stationary solutions induced by the cross-diffusion limit in the Lotka-Volterra system
澄清 Lotka-Volterra 系统中交叉扩散极限引起的稳态解的多层结构
  • 批准号:
    19K03581
  • 财政年份:
    2019
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of stationary solutions and motion of interfaces in bistable reaction-diffusion equations
双稳态反应扩散方程中平稳解的结构和界面运动
  • 批准号:
    15K17569
  • 财政年份:
    2015
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Structure on the Set of Stationary Solutions for a Two Competing Species Model with Density-Dependent Diffusion
具有密度相关扩散的两种竞争物种模型的稳态解集的结构
  • 批准号:
    22540138
  • 财政年份:
    2010
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
  • 批准号:
    20540122
  • 财政年份:
    2008
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bifurcation structure of stationary solutions for a reaction-diffusion system with density-dependent diffusion
密度依赖扩散反应扩散系统稳态解的分叉结构
  • 批准号:
    19540136
  • 财政年份:
    2007
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Stationary Solutions and the Pinning Phenomena for the Modeling of Phase Boundary Motions in Materials Science
材料科学中相边界运动建模的稳态解和钉扎现象分析
  • 批准号:
    0406033
  • 财政年份:
    2004
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Bifurcation structure of positive stationary solutions for a competition-diffusion system and its numerical verification
竞争扩散系统正平稳解的分岔结构及其数值验证
  • 批准号:
    15540124
  • 财政年份:
    2003
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Stationary Solutions to Structural Optimization Problems
结构优化问题的非平稳解
  • 批准号:
    8110784
  • 财政年份:
    1981
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Generation of Stationary Solutions to the Einstein Field Equations
爱因斯坦场方程平稳解的生成
  • 批准号:
    7812294
  • 财政年份:
    1978
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了