Harmonic analysis on graphs and discrete groups, and scaling limit for probability models
图和离散组的调和分析以及概率模型的缩放限制
基本信息
- 批准号:13640175
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is to read out statistical properties of huge systems characterized by a certain symmetry from the viewpoint of asymptotic spectral analysis and scaling limits by using the methods of harmonic analysis and representation theory. We obtained concrete results as follows.1. We computed scaling limits for the spectral distributions of adjacency operators on graphs in the framework of quantum central limit theorem. We introduced Gibbs states as well as vacuum states on distance-regular graphs and investigated the limit picture in low temperature and high degrees especially for Johnson graphs. The result is described in terms of the interacting Fock space associated with Meixner polynomials. Interesting distributions are derived in the limit by using combinatorial structure of creators and annihilators.2. We established a general theory for spectral analysis of graphs by the method of quantum decomposition. We revealed a connection of asymptotic characteristic values of regular graphs with the parameters of interacting Fock spaces. The limit distributions are systematically described by using methods of orthogonal polynomials and Green functions beyond computation of individual spectral limits. The item here is closely related to a joint work with Nobuaki Obata at Tohoku University.3. We obtained an extension (a quantization) of Kerov's central limit theorem for irreducible characters and the Plancherel measure as an asymptotic aspect of representations of the symmetric groups. Since the result goes out of the framework of interacting Fock spaces, we introduced a modification of the usual Young graph as well as creators and annihilators on it.
本项目的目的是从渐近谱分析和标度极限的观点出发,利用调和分析和表示论的方法,读出具有一定对称性的巨系统的统计性质。具体研究结果如下:1.在量子中心极限定理的框架下,我们计算了图上邻接算子谱分布的标度极限。在距离正则图上引入了吉布斯态和真空态,并研究了低温和高温下的极限图,特别是约翰逊图的极限图.结果描述的相互作用Fock空间与Meixner多项式。利用创造子和零化子的组合结构,在极限下得到了有趣的分布.本文用量子分解的方法建立了图的谱分析的一般理论。揭示了正则图的渐近特征值与相互作用Fock空间参数之间的关系。利用正交多项式和绿色函数的方法,系统地描述了极限分布。这里的项目与东北大学Nobuaki Obata的合作密切相关。我们得到了一个扩展(量化)Kerov的中心极限定理的不可约字符和Plancherel措施作为一个渐近方面的陈述的对称群。由于这个结果超出了相互作用Fock空间的框架,我们引入了通常的Young图的一个修改以及它的生成子和零化子。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Higuchi, J.Murai, J.Wang: "The Dobrushin-Hryniv. theory for the two-dimensional lattice Widom-Rowlinson model"Advanced Studies in Pure Mathematics. 39. 233-281 (2004)
Y.Higuchi、J.Murai、J.Wang:“二维格维多姆-罗林森模型的 Dobrushin-Hryniv. 理论”纯数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Hora: "Scaling limit for Gibbs states of Johnson graphs and resulting Meixner classes"Infinite Dimensional Analysis, Quantum Probability, and Related Topics. 6. 139-143 (2003)
A.Hora:“约翰逊图吉布斯状态的缩放限制和所得的 Meixner 类”无限维分析、量子概率和相关主题。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Hora: "Gibbs state, quadratic embedding, and central limit theorem on large graphs"Quantum Informational. III. 67-74 (2001)
A.Hora:“大图上的吉布斯态、二次嵌入和中心极限定理”量子信息。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Hora: "Asymptotic spectral analysis on the Johnson graphs in infinit degree and zero temperature limit"Interdisciplinary Information Sciences. 10. 1-10 (2004)
A.Hora:“无限度和零温度极限约翰逊图的渐近谱分析”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Hora: "A noncommutative version of Kerov's Gaussian limit for the Plancherel measure of the symmetric group"Springer Lecture Notes in Mathematics. 1815. 77-88 (2003)
A.Hora:“对称群 Plancherel 测度的 Kerov 高斯极限的非交换版本”施普林格数学讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HORA Akihito其他文献
HORA Akihito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HORA Akihito', 18)}}的其他基金
Study on decomposition of unitary representations of groups and harmonic functions on branching graphs
分支图上群和调和函数的酉表示分解研究
- 批准号:
23540197 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated study of probability and representation theory towards harmonic analysis on huge groups
大群调和分析的概率与表示论综合研究
- 批准号:
19340032 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of asymptotic theory for representations of symmetric groups from the viewpoint of scaling limits for probability models
从概率模型标度极限的角度研究对称群表示的渐近理论
- 批准号:
16540154 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic analysis on discrete structures and its applications to classical and quantum probability models
离散结构的调和分析及其在经典和量子概率模型中的应用
- 批准号:
11640168 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Discretization and scaling limit for problems of stochastic calculus of variations
随机变分问题的离散化和标度极限
- 批准号:
18K03343 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
- 批准号:
1909525 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
- 批准号:
1712684 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
- 批准号:
476253-2015 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
- 批准号:
476253-2015 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Scaling limit in dispersive equations
色散方程中的标度极限
- 批准号:
1560156 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Schramm Loewner Evolution, The Rate of Convergence of Conformally Invariant Observables and Interfaces of Two-Dimensional Lattice Models in the Scaling Limit
Schramm Loewner 演化、共形不变可观测量的收敛率和缩放极限下二维晶格模型的界面
- 批准号:
476253-2015 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Scaling limit in dispersive equations
色散方程中的标度极限
- 批准号:
1415980 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Scaling limit for stochastic models originated from Hamiltonian dynamics
源自哈密顿动力学的随机模型的标度极限
- 批准号:
25800068 - 财政年份:2013
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Discrete geometric analysis of the scaling limit and its applications
尺度极限的离散几何分析及其应用
- 批准号:
24840002 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up