Global study on analytic solutions of functional equations
函数方程解析解的全局研究
基本信息
- 批准号:13640221
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. We have studied Riceati differential equations with doubly periodic coefficients. It was shown that all the periodic solutions are doubly periodic, Also we btained their periods and expressions.2. We have studied the distribution of zero of solutions satisfying linear differential equations with simply periodic meromorphic coefficients. Using Stokes phenomena of solutions, we gave estimates for zero-frequency of solutions of a class of equations containing Hill equations and Mathev equations.3. For Painleve transcendents (I), (II), (IV), we obtained estimates for the growth. For Painleve transcendents (III), (V) on the universal covering, we obtained estimates for the growth. For (I), we obtained a lower estimate as well. We studied the value distribution of small target as well.4. For higher order Painleve equations belonging to PI-hierarchy, we obtained a lower estimate for the frequency of poles of meromorphic solutions.
1.研究了具有双周期系数的Riceati微分方程.证明了所有的周期解都是双周期的,并给出了它们的周期和表达式.研究了具有单周期亚纯系数的线性微分方程解的零点分布。利用解的Stokes现象,给出了一类包含Hill方程和Mathev方程的方程解的零频率估计.对于Painleve超越(I),(II),(IV),我们得到了增长的估计.对于泛覆盖上的Painleve超越(III),(V),我们得到了增长的估计.对于(I),我们也得到了一个较低的估计。研究了小目标的价值分布.对于属于PI族的高阶Painleve方程,我们得到了亚纯解的极点频率的一个较低估计。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Katsuya Ishizaki, Ilpo Laine, Shun Shimomura, Kazuya Tohge: "Riccati differential equations with elliptic coefficiets, II"Tohoku Math. J.. (to appear).
Katsuya Ishizaki、Ilpo Laine、Shun Shimomura、Kazuya Tohge:“带椭圆系数的 Riccati 微分方程,II”东北数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shun Shimomura: "Osci llanon results for n-th order linear difteventcal eguations with meromorpbs periodic cefficients"Nagoya Math.J.. 166. 55-82 (2002)
Shun Shimomura:“具有 meromorpbs 周期系数的 n 阶线性 difteventcal 方程的振荡结果”Nagoya Math.J.. 166. 55-82 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shun Shimomura: "On defiuencies of small functions for Painleve transcendents of the fourth kind"Ann.Acad.Sci.Fenn.Ser.AI Math.. (to appear).
Shun Shimomura:“关于第四类 Painleve 超验者的小函数的缺陷”Ann.Acad.Sci.Fenn.Ser.AI Math..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Norio, Kikuchi: "Holder estimates of solutions to difference partial differential equations of elliptic-parabolic type"J.Geom.Anal. 11. 77-89 (2001)
Norio, Kikuchi:“椭圆抛物型差分偏微分方程解的持有者估计”J.Geom.Anal。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shun Shimomura: "Lower estimates for the growth of Painleve transcendents"Funkcial.Ehvac.. to appear.
Shun Shimomura:“对 Painleve 超越者的增长的较低估计”Funkcial.Ehvac .. 出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMOMURA Shun其他文献
SHIMOMURA Shun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMOMURA Shun', 18)}}的其他基金
Global study of nonlinear special functions and its application
非线性特殊函数的全局研究及其应用
- 批准号:
22340037 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analytic study of Painleve equations and a nelated clans of equation
Painleve方程及相关方程族的解析研究
- 批准号:
17340050 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global study of functional equations and special functions
函数方程和特殊函数的全局研究
- 批准号:
15540212 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
a study of special functions defined by functional equations
对函数方程定义的特殊函数的研究
- 批准号:
11640212 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonlinear Stokes phenomenon in Painleve; equations and BPS structure
Painleve 中的非线性斯托克斯现象;
- 批准号:
23K17654 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Research of integrable systems around the Painleve equations
围绕Painleve方程的可积系统研究
- 批准号:
18K03323 - 财政年份:2018
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Painleve equations: analytical properties and numerical computation
Painleve 方程:分析特性和数值计算
- 批准号:
EP/P026532/1 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Research Grant
CBMS Conference: Discrete Painleve Equations
CBMS 会议:离散 Painleve 方程
- 批准号:
1543860 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Study of Painleve equations by the field theory
Painleve方程的场论研究
- 批准号:
16K13765 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Hypergeometric functions and Painleve equations
超几何函数和 Painleve 方程
- 批准号:
16K05165 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorics of special polynomials associated to certain solutions of Painleve equations
与 Painleve 方程的某些解相关的特殊多项式的组合
- 批准号:
15K13425 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research of integrable systems around the Painleve equations
围绕Painleve方程的可积系统研究
- 批准号:
15K04894 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An irregular version of conformal field theory and Painleve equations
共形场论和 Painleve 方程的不规则版本
- 批准号:
15K17560 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




