a study of special functions defined by functional equations

对函数方程定义的特殊函数的研究

基本信息

  • 批准号:
    11640212
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

1. We clarified the asymptotic behavior of a confluent hypergeometric function by using an integral representation. Applying the result we also examined the global behavior of solutions of a confluent Pochhammer equation.2. We examined the value distribution of Painleve transcendents of the third and the fifth kind. For Painleve transcendents of the first, the second and the fourth kind, we proved the finiteness of the growth order by two different methods. For these Painleve transcendents we examined the deficiency of small functions.3. We proved the Painleve property of a degenerate Garnier system which is a two-variable version of the first Painleve equation, and also proved that, for every solution of it, the singular loci are analytic sets expressed in terms of solutions of a fourth-order nonlinear ordinary differential equation.4. For linear differential equations with doubly periodic meromorphic coefficients, we examined the value distribution and the growth order of meromorphic solutions. For Riccati differential equations with elliptic coefficients, we proved that, under certain conditions, every periodic solution is doubly periodic, and obtained expressions of such solutions.
1. 利用积分表示,给出了合流超几何函数的渐近性质。应用这一结果,我们还检验了一个合流Pochhammer方程解的整体行为。考察了第三类和第五类painlevel超越的值分布。对于第一类、第二类和第四类的Painleve超越,我们分别用两种不同的方法证明了生长序的有限性。对于这些painlevel超越,我们考察了小函数的不足。3 .我们证明了一类退化Garnier系统的Painleve性质,该系统是第一个Painleve方程的两变量版本,并且证明了它的每一个解的奇异轨迹都是用四阶非线性常微分方程的解表示的解析集。对于具有双周期亚纯系数的线性微分方程,研究了其亚纯解的值分布和生长顺序。对于椭圆型系数Riccati微分方程,证明了在一定条件下,每一个周期解都是双周期的,并得到了双周期解的表达式。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shun Shimomura: "On deficiencies of small functions for Painleve transcendents of the fourth kind"Ann.Acad.Sci.Fenn.Ser.AI Math.. (to appear).
Shun Shimomura:“关于第四类 Painleve 超验者的小函数的缺陷”Ann.Acad.Sci.Fenn.Ser.AI Math..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shun Shimomura: "A confluent hypergesmetric system associated with Φ_<[3]> and a confluent Jordan-Pochhammer equation"Funkcial.Ekvac.. 42. 225-240 (1999)
Shun Shimomura:“与 Φ_<[3]> 相关的汇合超几何系统和汇合 Jordan-Pochhammer 方程”Funkcial.Ekvac.. 42. 225-240 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shun Shimomura: "Pole loci of solutions of a degenerate Garnier system"Nonlineasity. 14. 193-203 (2001)
Shun Shimomura:“简并卡尼尔系统解的极点轨迹”非线性。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shun Shimomura: "Value distribution of Painleve transcendents of the third kind"Complex Variables. (to appear).
Shun Shimomura:“第三类 Painleve 超越者的价值分布”复杂变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tatsuya Ta te: "Some remarks on the off-diagonal asymptotics in quantum ergodicity"Asymptonic Analysis. 19. 289-296 (1999)
Tatsuya Ta te:《关于量子遍历性中非对角线渐近的一些评论》渐近分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMOMURA Shun其他文献

SHIMOMURA Shun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMOMURA Shun', 18)}}的其他基金

Global study of nonlinear special functions and its application
非线性特殊函数的全局研究及其应用
  • 批准号:
    22340037
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytic study of Painleve equations and a nelated clans of equation
Painleve方程及相关方程族的解析研究
  • 批准号:
    17340050
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global study of functional equations and special functions
函数方程和特殊函数的全局研究
  • 批准号:
    15540212
  • 财政年份:
    2003
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global study on analytic solutions of functional equations
函数方程解析解的全局研究
  • 批准号:
    13640221
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Application of Asymptotic Expansion Methods to comparison among SABR-type models
渐近展开法在SABR型模型比较中的应用
  • 批准号:
    20K01748
  • 财政年份:
    2020
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of Asymptotic Expansion Method for Nonlinear Reaction-Diffusion Equations
非线性反应扩散方程渐近展开法的发展与应用
  • 批准号:
    17K05334
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on Asymptotic Expansion Approaches around Non-Gaussian Distributions
围绕非高斯分布的渐近展开方法研究
  • 批准号:
    15K17087
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Asymptotic expansion for the discretely observed interest rate models and its applications to interest rate derivatives pricing
离散观测利率模型的渐近展开及其在利率衍生品定价中的应用
  • 批准号:
    26380401
  • 财政年份:
    2014
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An asymptotic expansion of the fundamental solution to the heat equation and its applications
热方程基本解的渐近展开及其应用
  • 批准号:
    21540194
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic expansion for incompressible flow in rotating fields and its applications.
旋转场中不可压缩流动的渐近展开及其应用。
  • 批准号:
    20540217
  • 财政年份:
    2008
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic expansion, statistical inference and their applications
渐近展开、统计推断及其应用
  • 批准号:
    19340021
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An Asymptotic Expansion Approach to Numerical Problems in Finance
金融数值问题的渐近展开法
  • 批准号:
    13680509
  • 财政年份:
    2001
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic expansion of the Bergman kernel and CR gauge invariants
Bergman 核和 CR 规范不变量的渐近展开
  • 批准号:
    12640176
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Grobner asymptotic expansion for regular holononic systems
正则完整子系统的 Grobner 渐近展开式
  • 批准号:
    10440044
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了