Analysis of Higher Dimensional Systems by use of the Tensor Product Variational Approach
使用张量积变分方法分析高维系统
基本信息
- 批准号:13640383
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have developed a new numerical renormalization group (RG) method for two-dimensional (2D) quantum systems and 3D classical systems, using a variational state represented as a product of local weights. As an example, we employed 2D IRF model, that contains 3 parameters, as a variational state for the square lattice S=1/2 XXZ model, which is one of the representative 2D quantum systems. We obtained a good energy estimate, even though we have only 3 parameters. In this case the variational formulation works better in the anisotroplc limit, the XY mdoel.For the application for 3D Classical systems, we choose 3D lsing model as a reference system, and prepare a variational state that contains 162 variational parameters. In this case the local factor has auxiliary spin variable, that can be interpreted as the renormalized spin. Since there are so many parameters, one has to survey them automaticaliy. For this purpouse we developed a self-consistent equation for the local weight, and improv … More e them vie iterative numerical procedure. As a result, we showed that the phase transition temperature is obtained accurately within the error of 1%.In the above cases, the variational state is uniform. This Is because CTMRG, the numerical RG method we have used, can treat uniform 2D models only. In order to improve this restriction, we considered a usage of the density matrix renormalization group (DMRG) for the system that have non-uniform ground state. As an example, we have started calculations of thermal state hi the ANNNI model, which has been considered to have complex structure in the ordered phase that appears in the Intermediate temperature. At present, we get a partial phase diagram, that suggests the suppression of the area of comensulate phase.As a bi-product of these researches, we unexpectedly get a new usage of CTMRG for the stochastic systems. The system has a kind of speed of light and information can be transferred within the light cone. We find a new targeting scheme for this case, and proposed a new numerical RG method, "the Ught Cone CTMRG method". Depending on the parameter condition the method becomes instable, and to improve this drawback is one of the task in the future studies Less
我们发展了一种新的数值重整化群(RG)方法,用于二维(2D)量子系统和3D经典系统,使用变分状态表示为局部权重的乘积。作为一个例子,我们采用了包含三个参数的二维IRF模型作为正方形晶格S=1/2XXZ模型的变分态,该模型是二维量子系统的代表之一。我们得到了一个很好的能量估计,即使我们只有3个参数。对于3D经典系统的应用,我们选择3D lsing模型作为参考系,准备了一个包含162个变分参数的变分状态。在这种情况下,局部因子有辅助自旋变量,可以解释为重整化自旋。由于有这么多的参数,一个人必须调查他们自动。为此,我们建立了一个自洽的局部权方程,并改进了局部权方程。 ...更多信息 用迭代数值方法求解。结果表明,该方法可以准确地得到相变温度,误差在1%以内,且在上述情况下,相变温度的变化状态是一致的.这是因为我们使用的数值RG方法CTMRG只能处理均匀的2D模型。为了改善这一限制,我们考虑了密度矩阵重整化群(DMRG)的使用具有非均匀基态的系统。作为一个例子,我们已经开始在ANNNI模型中的热状态的计算,这被认为是在有序相,出现在中间温度的复杂结构。目前,我们得到了一个部分相图,它表明了共囊相的面积被抑制,作为这些研究的一个副产品,我们意外地得到了CTMRG在随机系统中的一个新的用法。该系统具有光速,信息可以在光锥内传输。针对这种情况,我们提出了一种新的目标选择方案,并提出了一种新的数值RG方法--直锥CTMRG方法。该方法受参数条件的影响而变得不稳定,改善这一缺点是今后研究的任务之一
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Andreas Kemper: "Stochastic Light-Cone CTMRG"Journal of Physics A : Math Gen.. 36. 29-41 (2003)
安德烈亚斯·肯珀 (Andreas Kemper):“随机光锥 CTMRG”物理学杂志 A:数学 Gen.. 36. 29-41 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Andrej Gendiar: "Latent Heat Calculation of the 3D q=3,4,5 Potts Models"Phys.Rev.. E65. 046702(1)-046702(7) (2002)
Andrej Gendiar:“3D q=3,4,5 Potts 模型的潜热计算”Phys.Rev.. E65。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Takasaki: "Phase Daigram of a 2D Vertex Model"J.Phys.Soc.Jpn.. 70. 1428-1430 (2001)
Hiroshi Takasaki:“二维顶点模型的相图”J.Phys.Soc.Jpn.. 70. 1428-1430 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuya Maeshima: "Vertical Density Matrix Algorithm"Phys.Rev.. E64. 016705(1)-016705(6) (2001)
Nobuya Maeshima:“垂直密度矩阵算法”Phys.Rev.. E64。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Andrej Gendiar: "Latent Heat Calculation of the 3D q=3,4,5 Potts Models"Phys.Rev.E. 65. 046702[1]-046702[7] (2002)
Andrej Gendiar:“3D q=3,4,5 Potts 模型的潜热计算”Phys.Rev.E。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHINO Tomotoshi其他文献
NISHINO Tomotoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHINO Tomotoshi', 18)}}的其他基金
Optimization of tensor network states by means of a minimal principle and applications to quantum systems
通过最小原理优化张量网络状态及其在量子系统中的应用
- 批准号:
22540388 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMRG and Quantum Heat Bath - Principles and Applications -
DMRG 和量子热浴 - 原理和应用 -
- 批准号:
19540403 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Trend in DMRG - from the Optimization of the Tensor Product Decomposition
DMRG新趋势——来自张量积分解的优化
- 批准号:
17540327 - 财政年份:2005
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of DMRG by explicit construction of Density Matrices
通过密度矩阵的显式构造来扩展 DMRG
- 批准号:
11640376 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Theoretical studies of quantum transport in molecular junctions using the density matrix hierarchy method: Nonadiabatic effects, anharmonic vibrations, and current fluctuations
使用密度矩阵层次法对分子结中的量子输运进行理论研究:非绝热效应、非简谐振动和电流涨落
- 批准号:
317069726 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Research Grants
Advancement of density matrix renormalization group - Adaptation to point group symmetry
密度矩阵重整化群的进展——对点群对称性的适应
- 批准号:
17K14359 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
To the limits of the density matrix renormalization group in quantum chemistry, and beyond
量子化学中密度矩阵重整化群的极限及其他
- 批准号:
1665333 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Spin and charge currents through contacted quantum spin chains: A time-dependent density matrix renormalization group study
通过接触量子自旋链的自旋和电荷电流:时间相关的密度矩阵重正化群研究
- 批准号:
344071920 - 财政年份:2017
- 资助金额:
$ 2.24万 - 项目类别:
Research Grants
Reconciling wavefunction with reduced density matrix methods for the study of photocelles and thermoelectric devices
将波函数与约化密度矩阵方法相协调,用于研究光电管和热电器件
- 批准号:
502015-2016 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Constrained Linear Scaling 1-Electron Density Matrix Optimization
约束线性缩放 1-电子密度矩阵优化
- 批准号:
459621-2014 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Fast Achieving High Accuracy for Both Total Energy and Density Matrix with Applications to Nanomaterials and Green Chemistry
快速实现总能量和密度矩阵的高精度并应用于纳米材料和绿色化学
- 批准号:
250005-2012 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Constrained Linear Scaling 1-Electron Density Matrix Optimization
约束线性缩放 1-电子密度矩阵优化
- 批准号:
459621-2014 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Fast Achieving High Accuracy for Both Total Energy and Density Matrix with Applications to Nanomaterials and Green Chemistry
快速实现总能量和密度矩阵的高精度并应用于纳米材料和绿色化学
- 批准号:
250005-2012 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Studying Phase Transitions and Entanglement Entropy in Condensed Matter Systems using Density Matrix Renormalization Group Techniques
使用密度矩阵重整化群技术研究凝聚态系统中的相变和纠缠熵
- 批准号:
480888-2015 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's