New Trend in DMRG - from the Optimization of the Tensor Product Decomposition

DMRG新趋势——来自张量积分解的优化

基本信息

  • 批准号:
    17540327
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

From the view point of the tensor product variational method, we have developed new variants of the density matrix renormalization group (DMRG) method.1. The computational background of the product wave function renormalization group (PWFRG) method, which accelerate the numerical convergence of the infinite system algorithm in DMRG, is analytically given by way of the corner transfer matrix renormalization group (CTMRG) method. The width of the variational state in the form of matrix product is extended applying a special transfer matrix, which is created by applying renormalization matrices to the identity operator.2. The real time DMRG, which trace the time evolution of quantum states, has a problem of error stacking. In order to improve the problem, we have considered a kind of action, which is calculated from product of tensors on each time slice. Minimization of the action draws the time evolution of the system, and thus the numerical algorithm of the real time DMRG is reformulated as a minimization problem, which can be treated very rapidly by parallel computation.3. As a practical application of the CTMRG method, we observe the phase diagram of a 10-vertex model. As a result, we find a new critical point, which subject to the Ising universality class.4. As a joint research with Dr. Andre j Gendiar, we observe the domain wall energy of the two-dimensional ANNNI model by the DMRG method. Phase transition directly from the anti-phase to the disordered phase is observed, and the presence of the floating phase is excluded.
从张量积变分方法的角度出发,我们开发了密度矩阵重整化群(DMRG)方法的新变体。 1.通过角转移矩阵重正化群(CTMRG)方法,分析给出了乘积波函数重正化群(PWFRG)方法的计算背景,该方法加速了DMRG中无限系统算法的数值收敛。采用特殊的传递矩阵扩展了矩阵乘积形式的变分状态的宽度,该传递矩阵是通过将重整化矩阵应用于恒等算子而创建的。 2.追踪量子态时间演化的实时 DMRG 存在错误叠加问题。为了改善这个问题,我们考虑了一种动作,它是根据每个时间片上张量的乘积来计算的。动作的最小化吸引了系统的时间演化,因此实时DMRG的数值算法被重新表述为一个最小化问题,可以通过并行计算非常快速地处理。 3.作为 CTMRG 方法的实际应用,我们观察 10 顶点模型的相图。结果,我们发现了一个新的临界点,该临界点服从伊辛普适性等级。 4.作为与Andre j Gendiar博士的联合研究,我们通过DMRG方法观察了二维ANNNI模型的畴壁能量。观察到直接从反相到无序相的相变,并且排除了浮动相的存在。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulation of Local Magnetization in Two-Dimensional ANNNNI Model
二维 ANNNNI 模型中局部磁化强度的调制
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Inami;M. A. Mohamed;E. Shikoh;A. Fujiwara;Rene Derian
  • 通讯作者:
    Rene Derian
Product Wave Function Renormalization Group
Modulation of Local Magnetization in Two-Dimensional
二维局部磁化强度的调制
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小西 敦;仕幸 英治;藤原 明比古;Koji Ueda et al.;Rene Derian et al.
  • 通讯作者:
    Rene Derian et al.
Critical Point of a Symmetric Vertex Model
对称顶点模型的临界点
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    太田 洋平;川崎 菜穂子;久保園 芳博;藤原 明比古;上田 幸司
  • 通讯作者:
    上田 幸司
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHINO Tomotoshi其他文献

NISHINO Tomotoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHINO Tomotoshi', 18)}}的其他基金

Optimization of tensor network states by means of a minimal principle and applications to quantum systems
通过最小原理优化张量网络状态及其在量子系统中的应用
  • 批准号:
    22540388
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DMRG and Quantum Heat Bath - Principles and Applications -
DMRG 和量子热浴 - 原理和应用 -
  • 批准号:
    19540403
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Higher Dimensional Systems by use of the Tensor Product Variational Approach
使用张量积变分方法分析高维系统
  • 批准号:
    13640383
  • 财政年份:
    2001
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extension of DMRG by explicit construction of Density Matrices
通过密度矩阵的显式构造来扩展 DMRG
  • 批准号:
    11640376
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

The tensor product of Beck modules
Beck模块的张量积
  • 批准号:
    563139-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    University Undergraduate Student Research Awards
Tensor-product algorithms for quantum control problems
量子控制问题的张量积算法
  • 批准号:
    EP/P033954/1
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Research Grant
Tensor product numerical methods for high-dimensional problems in probability and quantum calculations
概率和量子计算中高维问题的张量积数值方法
  • 批准号:
    EP/M019004/1
  • 财政年份:
    2016
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Fellowship
Alternatives to the tensor product in wavelet construction and beyond
小波构造及其他领域中张量积的替代方案
  • 批准号:
    1115870
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Quantum entanglement for tensor product states and numerical renormalization groups
张量积态和数值重正化群的量子纠缠
  • 批准号:
    23540442
  • 财政年份:
    2011
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation of explicit SU(2)-invariance in tensor product states and applications to renormalization group calculations
张量积状态中显式 SU(2) 不变性的实现及其在重正化群计算中的应用
  • 批准号:
    91564163
  • 财政年份:
    2008
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Research Grants
Adaptive solution of coupled cluster equation and tensor product approximation of two-electron integrals
耦合簇方程的自适应解与二电子积分张量积近似
  • 批准号:
    5412684
  • 财政年份:
    2003
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Priority Programmes
Analysis of Higher Dimensional Systems by use of the Tensor Product Variational Approach
使用张量积变分方法分析高维系统
  • 批准号:
    13640383
  • 财政年份:
    2001
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Branching Rules and Tensor Product Decompositions in Algebraic Lie Theory
代数李理论中的分支规则和张量积分解
  • 批准号:
    9801442
  • 财政年份:
    1998
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Multilevel sparse tensor product approximation for manifolds and for functions and operators on manifolds (C04)
流形以及流形上的函数和运算符的多级稀疏张量积近似 (C04)
  • 批准号:
    233527731
  • 财政年份:
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了