Multidimensional Tunnelling Effect and Complexified Classical Dynamics
多维隧道效应和复杂的经典动力学
基本信息
- 批准号:13640410
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multi-dimensionality of the systems radically influences tunnelling phenomena. In particular, if the system is classically non-integrable, complicated tunneling phenomenona, which are due to the presence of chaotic set and are called chaotic tunnelling, are observed. The fundamental mechanism of chaotic tunnelling is investigated by using classical dynamics extended to the fully complex domain, i.e. the complex semiclassical method.(1) Tunnelling in the presence of chaos is investigated for a class of quantum map system. Extensive numerical studies reveal that the tunnelling trajectories dominantly contributing the dynamical tunnelling process form a very limited class of sets in the initial manifold, which is called "Laputa chains" from their characteristic shape. Mathematical significance of such a set is investigated applying the results of hormorphic dynamical theory to numerically clarified natures. The main results is that the closure of Laputa chain is bounded by two sets, namel … More y, the Jula set J^+, and the filled-in Julia set K^+, from below and above, respectively. It is further conjectured that K^+=J^+. If this is the case, the closure of Laputa chain is nothing more than Julia set. The wavefunction tunnelling through the dynamical barrier is constructed along the real component of J^-. These facts means that the major trajectories tunnells being guided by the complexified stable manifolds of saddles dense in the chaotic sea, and are scatterd along their unstable manifold.(2) Confining ourselves to a class of barrier tunnelling process, we elucidate how multi-dimensionality of the system results in a new universal mechanism causing complicated tunnelling phenomena peculiar to multi-dimensional barrier systems. First we showed that the complex semiclassical theory surely reproduces the purely quantum wave matrix even in the strong coupling regime, where the tunnelling component is accompanied by complicated fringes. Next, it is shown that the complexified trajectories guided by complexified stable and unstable manifolds are responsible for the fringed tunneling effect. Such a mechanism provides a new picture of tunnelling quite different from the classical instanton mechanism. Seen from a mathematical side, the mechanism is explained in terms of a divergent shift of movable singularities, which are the origins of the multivaluedness of complexified trajectories in one-dimensional tunnelling problem. Less
系统的多维性从根本上影响隧穿现象。特别地,当系统是经典不可积的时,由于混沌集的存在,会出现复杂的隧穿现象,称为混沌隧穿。本文用经典动力学方法推广到全复域,即复半经典方法研究了混沌隧穿的基本机制。(1)研究了一类量子映射系统在混沌状态下的隧穿现象。大量的数值研究表明,隧道轨道占主导地位的动力学隧道过程中形成一个非常有限的一类集的初始流形,这是所谓的“Laputa链”,从他们的特征形状。数学意义的这样一个集的研究应用的结果,数值澄清的性质的准态动力学理论。主要结果是Laputa链的闭包是由两个集合有界的,即 ...更多信息 y、Julia集J^+和填充Julia集K^+。进一步证明K^+=J^+。如果是这样,Laputa链的闭包只不过是Julia集。穿过动力学势垒的波函数是沿着J^-的真实的分量构造的。这些事实意味着主轨迹由混沌海中稠密的鞍形的复杂稳定流形引导,并沿着其不稳定流形散布。(2)限制自己的一类势垒隧穿过程中,我们阐明如何多维的系统结果在一个新的普遍机制,造成复杂的隧穿现象特有的多维势垒系统。首先,我们表明,复杂的半经典理论肯定再现纯粹的量子波矩阵,即使在强耦合制度,其中隧道分量伴随着复杂的条纹。其次,证明了由复化稳定流形和不稳定流形引导的复化轨迹是产生边缘隧穿效应的原因。这种机制提供了一种不同于经典瞬子机制的新的隧穿图景。从数学的角度来看,该机制被解释为一个发散移动的可移动的奇点,这是起源的复杂的轨迹在一维隧道问题的多值性。少
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex-classical mechanism of tunneling process in strongly coupled 1.5 dimensional barrier systems
强耦合1.5维势垒系统中隧道过程的复杂经典机制
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:K.Takahashi;K.S.Ikeda
- 通讯作者:K.S.Ikeda
K.Takahashi, K.S.Ikeda: "Movable singularities, complex-domain heteroclinicity, and fringed tunneling in multi-dimensional systems"Physics Letters A. 297. 370-375 (2002)
K.Takahashi、K.S.Ikeda:“多维系统中的可移动奇点、复域异宿性和边缘隧道”《物理快报》A. 297. 370-375 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Classical Mechanism of Multidimensional barrier tunneling
多维势垒隧道效应的经典机制
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Takahashi;K.S.Ikeda
- 通讯作者:K.S.Ikeda
T.Onishi, A.Shudo, K.S.Ikeda, K.Takahashi: "Tunneling mechanism due to chaos in complex phase space"Phys. Rev. E. 64. 025201-1-025201-4 (2001)
T.Onishi、A.Shudo、K.S.Ikeda、K.Takahashi:“复杂相空间中混沌引起的隧道机制”Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Julia set describes quantum tunnelling in the presence of chaos
朱莉娅·塞特(Julia Set)描述了混沌中的量子隧道效应
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:A.Shudo;Y.Ishii;K.S.Ikeda
- 通讯作者:K.S.Ikeda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IKEDA Kensuke其他文献
IKEDA Kensuke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IKEDA Kensuke', 18)}}的其他基金
The fundamental problem of classical dynamics'' in the complexified space and non-integrable tunneling phenomena
复杂空间中经典动力学的基本问题和不可积隧道现象
- 批准号:
15H03701 - 财政年份:2015
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
``The fundamental ploblem of mechanics'' and many-dimensional tunneling
“力学的基本问题”和多维隧道
- 批准号:
24340094 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multi-dimensional tunnelling and chaos in complexified phase space
复杂相空间中的多维隧道效应和混沌
- 批准号:
20340100 - 财政年份:2008
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Chaotic Tunneling
混沌隧道研究
- 批准号:
10640395 - 财政年份:1998
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for Many-Dimensional Quantum and Classical Chaos
多维量子和经典混沌研究
- 批准号:
62540263 - 财政年份:1987
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
混沌保密通信若干基础问题研究
- 批准号:61073187
- 批准年份:2010
- 资助金额:11.0 万元
- 项目类别:面上项目
混沌动力系统中的广义熵和维数
- 批准号:10571086
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
多维动态时空耦合映象分析及其应用研究
- 批准号:60571066
- 批准年份:2005
- 资助金额:21.0 万元
- 项目类别:面上项目
混沌控制和同步中几个问题
- 批准号:10372054
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
- 批准号:18670411
- 批准年份:1986
- 资助金额:0.55 万元
- 项目类别:面上项目
相似海外基金
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Investigation of synchronized phenomena and its application to chaos control in a laboratory plasma
同步现象的研究及其在实验室等离子体混沌控制中的应用
- 批准号:
23K03355 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast Chaos Detection through Data-Driven Approach
通过数据驱动方法进行快速混沌检测
- 批准号:
23K16963 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
- 批准号:
2306332 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
CloudEnergyBalance: Simple climate models to quantify impact of large-scale cloudiness & deterministic chaos on climatic variability & tipping points
CloudEnergyBalance:用于量化大规模多云影响的简单气候模型
- 批准号:
EP/Y01653X/1 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Fellowship
Wasserstein-Type Gradient Flow via Propagation by Chaos for a Continuous Formulation of a Shallow Neural Network
通过混沌传播的 Wasserstein 型梯度流用于连续制定浅层神经网络
- 批准号:
2879236 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Studentship
Development of an optimization method using chaos for spin devices
开发利用混沌的自旋器件优化方法
- 批准号:
23KJ0331 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Research Grant














{{item.name}}会员




