Sequential quantitative MRI for functional characterization of head and neck cancer, outcome prediction and future biological individualization of MRI-guided radiotherapy

连续定量 MRI 用于头颈癌的功能表征、结果预测和 MRI 引导放射治疗的未来生物个体化

基本信息

项目摘要

With the invention and clinical implementation of combined MRI-Linacs, enabling MRI-guided adaptive radiotherapy, sequential assessment of quantitative tissue characteristics before and during fractionated radiotherapy, as well as future individualised, adaptive radiotherapy according to prognostic quantitative parameters, seems possible. After implementation and testing the most important MRI methods for the characterisation of head and neck tumours and including more than 30 patients in the clinical study for comparing information obtained from MRI image data sets recorded on the 1.5 T MRI-Linac and a modern 3 T high-field MRI in the first project phase, the major aims of this project are now the following: In addition to relaxometric data and diffusion characteristics, further quantitative methods will be established, mainly dealing with blood perfusion, which were described in recent publications on animal studies as relevant parameters for treatment outcome. It is further planned to continue the already started study with about 30 additional head and neck cancer patients to establish a better statistical reliability and a valid basis for the development of prediction models for radiotherapy outcome. Furthermore, the prospectively collected patient data will be used for external validation of the results obtained in the previous project phase. In addition to the initial values of the tissue characteristics assessed before the start treatment, changes in the quantitative markers during the course of radiotherapy will also be determined and correlated with outcome. The changes will also be used to inform and develop strategies for functional adaptation of the dose distribution during the course of radiotherapy in order to achieve better response rates. Promising candidates for quantitative imaging biomarkers as well as different technical concepts to realise response-adaptive MRI–guided radiotherapy will be tested in a retrospective in-silico planning study using a representative patient cohort.
通过组合的MRI-直线加速器的发明和临床实施,使得MRI引导的自适应放射治疗、在分次放射治疗之前和期间的定量组织特征的顺序评估以及根据预后定量参数的未来个体化的自适应放射治疗似乎是可能的。在实施和测试了用于描述头颈部肿瘤特征的最重要MRI方法,并在临床研究中纳入了30多名患者,以比较在第一项目阶段中从1.5 T MRI-直线加速器和现代3 T高场MRI上记录的MRI图像数据集获得的信息后,该项目的主要目标如下:除了弛豫测量数据和扩散特性外,还将建立进一步的定量方法,主要处理血液灌注,在最近的动物研究出版物中将其描述为治疗结果的相关参数。还计划继续对另外约30名头颈癌患者进行已经开始的研究,以建立更好的统计可靠性和开发放射治疗结果预测模型的有效基础。此外,前瞻性收集的患者数据将用于对上一项目阶段获得的结果进行外部验证。除了开始治疗前评估的组织特征的初始值之外,还将确定放射治疗过程中定量标志物的变化并与结果相关联。这些变化还将用于为放射治疗过程中剂量分布的功能适应提供信息和制定策略,以实现更好的反应率。定量成像生物标志物的有前途的候选者以及实现反应自适应MRI引导放疗的不同技术概念将在使用代表性患者队列的回顾性计算机模拟计划研究中进行测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Konstantin Nikolaou其他文献

Professor Dr. Konstantin Nikolaou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Konstantin Nikolaou', 18)}}的其他基金

Quantitative MRI for structural and functional characterization of head and neck cancer for outcome prediction and biological individualization of MR-guided radiotherapy
用于头颈癌结构和功能表征的定量 MRI,用于 MR 引导放射治疗的结果预测和生物个体化
  • 批准号:
    437907809
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
古菌Ferroplasma sp.在黄铜矿生物浸出中的生态功能
  • 批准号:
    51074195
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
制冷系统故障诊断关键问题的定量研究
  • 批准号:
    50876059
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
  • 批准号:
    10806492
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Quantitative Detection of Coronary Microvascular Dysfunction in Long COVID Patients using a Comprehensive, Rapid, Free-Breathing Cardiovascular MRI
使用全面、快速、自由呼吸的心血管 MRI 定量检测长期新冠肺炎患者的冠状动脉微血管功能障碍
  • 批准号:
    10671235
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
MRC TS Award: Defining and predicting variability in early Parkinson's disease using quantitative MRI
MRC TS 奖:使用定量 MRI 定义和预测早期帕金森病的变异性
  • 批准号:
    MR/X023494/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
  • 批准号:
    10742197
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Prognostic MRI and Blood Markers of Wound Healing in Diabetic Foot Ulcers
糖尿病足溃疡伤口愈合的预后 MRI 和血液标志物
  • 批准号:
    10720218
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modelling visual information processing using MEG and MRI and its application to quantitative assessment of readability
使用 MEG 和 MRI 进行视觉信息处理建模及其在可读性定量评估中的应用
  • 批准号:
    22KJ1052
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Machine Learning and Radiomics Techniques for Analysis of Daily MRI in Glioblastoma Patients
用于分析胶质母细胞瘤患者日常 MRI 的机器学习和放射组学技术
  • 批准号:
    10751672
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Deep compressive quantitative MRI imaging
深度压缩定量 MRI 成像
  • 批准号:
    EP/X001091/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Quantitative Imaging Biomarker Prospective Validation of Dynamic Contrast-Enhanced MRI as a Metric of Orodental Injury After Radiotherapy (QI-ProVE-MRI)
动态对比增强 MRI 的定量成像生物标志物前瞻性验证作为放射治疗后口腔牙齿损伤的指标 (QI-ProVE-MRI)
  • 批准号:
    10668570
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了