Quasi Symmetric Moderate Refractive Index Photonic Crystal Waveguides on Mesoporous Substrates

介孔基底上的准对称中等折射率光子晶体波导

基本信息

项目摘要

We propose the research on fundamental aspects of optical wave propagation in thin polymer waveguiding films containing finite two dimensional (2d) photonic crystal lattice structures. We recently found singly index confined wave propagation and stop gaps in such finite 2d photonic crystal slab waveguides made from nanostructured amorphous polymers with a moderate refractive index contrast. The motivation to investigate this novel photonic crystal concept stems from the low intrinsical optical losses in these materials at 1.3µm wavelength (and also at 1.5µm in certain polymers) and from the large mode profiles that can be achieved. These may play a role to keep insertion losses small when such waveguides are coupled to monomode silica fibers in future technical applications. Extending our recent work, the proposed project intends, in the first part, to clarify the influence of geometrical parameters and symmetry on the wave propagation in polymer photonic crystal slab waveguides. Here, we are interested in investigating unperturbed lattices and linear defects. In the second part, we want to clarify under which conditions doubly confined guiding of light waves in photonic crystal polymer slabs is possible. Finally, we plan to investigate optical wave propagation in photonic crystal slabs made from novel electrooptical polymers. For instance, we intend to elucidate the electrooptical tuning potential of narrow band defect states in such structures. For theoretical calculations of our systems we use 3d-finite difference time domain and plane wave methods to investigate the transmission and reflection of waves of different frequencies, polarizations and directions of propagation. We will realize promising low loss structures by electron beam lithography and reacitive ion etching techniques and then characterize them spectroscopically.
本文主要研究光波在含有有限二维光子晶体晶格结构的聚合物波导薄膜中传播的基本问题。最近,我们发现单指数限制波的传播和停止间隙,这种有限的二维光子晶体平板波导制成的纳米结构的非晶聚合物具有适度的折射率对比。研究这种新型光子晶体概念的动机源于这些材料在1.3μm波长下(以及某些聚合物在1.5μm波长下)的低固有光学损耗以及可以实现的大模式分布。在未来的技术应用中,当这种波导耦合到单模石英光纤时,这些可以起到保持插入损耗小的作用。扩展我们最近的工作,拟议的项目打算,在第一部分,澄清的几何参数和对称性的影响,在聚合物光子晶体平板波导中的波传播。在这里,我们感兴趣的是研究未扰动晶格和线性缺陷。在第二部分中,我们想弄清楚在什么条件下光波在光子晶体聚合物平板中的双限制引导是可能的。最后,我们计划研究光波在由新型电光聚合物制成的光子晶体板中的传播。例如,我们打算阐明这种结构中窄带缺陷态的电光调谐潜力。对于我们的系统的理论计算,我们使用三维时域有限差分和平面波方法来研究不同频率,偏振和传播方向的波的透射和反射。我们将利用电子束微影技术与反应性离子蚀刻技术来实现有希望的低损耗结构,并以光谱来表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Manfred Eich其他文献

Professor Dr. Manfred Eich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Manfred Eich', 18)}}的其他基金

Quasi-disordered structures with 2D and 3D complete photonic bandgaps with arbitrarily small refractive-index contrast
具有任意小折射率对比度的 2D 和 3D 完整光子带隙的准无序结构
  • 批准号:
    278744289
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hoch und niedrig dispersive periodische und aperiodische mikrophotonische Strukturen in Silicon-On-Insulator
绝缘体上硅中的高和​​低色散周期性和非周期性微光子结构
  • 批准号:
    28893666
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Units
Elektrooptisch abstimmbare und verstärkende Slow Light Silizium Photonik
电光可调和放大慢光硅光子学
  • 批准号:
    28893599
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
  • 批准号:
    24K06666
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Distributed Symmetric Key Exchange (DSKE) Network
分布式对称密钥交换 (DSKE) 网络
  • 批准号:
    10077122
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
RUI: Extended Metal Atom Chain Complexes of Fe and Co Supported by a C3 Symmetric, Scaffolded Ligand Platform
RUI:C3 对称支架配体平台支持的 Fe 和 Co 的延伸金属原子链配合物
  • 批准号:
    2245569
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
  • 批准号:
    2309596
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Numerical Investigation of Symmetric Mass Generation
职业:对称质量生成的理论和数值研究
  • 批准号:
    2238360
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Limits of Symmetric Computation
对称计算的限制
  • 批准号:
    EP/X028259/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了