Study of Interface Control in Ultra-thin High-k Film on Silicon Substrate

硅基超薄高介电常数薄膜的界面控制研究

基本信息

  • 批准号:
    13852009
  • 负责人:
  • 金额:
    $ 76.29万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2005
  • 项目状态:
    已结题

项目摘要

This research target was to scientifically judge the possibility of usability of ultra-thin high-k dielectric films for next generation CMOS ULSI. Main results obtained are described below.1.Understanding of origin of high dielectric constants of high-k materials proposed and constructing a guiding principle of high-k materials design.(1)Phonon modes of high-k materials have been clearly provided using far-infrared absorption analysis.(2)Y or Si doping into HfO2 can enhance the dielectric constant (〜30) through the phase transformation.(3)La doping can enhance crystallization temperature as well as dielectric constant.(4)The dielectric constants were quantitatively analyzed through both molar volume change and molar polarizability and a guiding principle for designing high-k dielectrics was proposed.2.Understanding and control of high-k/Si interface layer(1)The interface layer growth at HfO2/Si was modeled as parameters of substrate orientation, oxidation time, and temperature. This fact has clarified that high-k/Si interface layer growth mechanism is significantly different from Si surface oxidation.(2)By taking account of atomic oxygen as oxidation species the interface layer growth model was quantitatively constructed and a guiding principle for the interface layer control was proposed.Based upon those results, we challenged to demonstrate sub-nm EOT high-k oxides. Though still some optimization was needed for the interface characteristics improvement, we have achieved high-k gate stack with EOT=0.8 nm and 5 orders smaller leakage current compared to SiO2 case. Thus, the numerical target of this research has been fully achieved.Furthermore, high-k dielectrics on Ge were also partly studied and new features of this system, particularly in the interface layer, have been observed. This result provides us a new research target for the next generation ULSI devices.
本研究的目的是科学判断超薄高介电常数薄膜应用于下一代CMOS ULSI的可能性。主要研究结果如下:1.提出了对高介电常数材料高介电常数成因的认识,构建了高介电常数材料设计的指导原则。(1)利用远红外吸收分析方法,清晰地给出了高k材料的声子模。(2)Y或Si掺杂到HfO 2中可以通过相变提高介电常数(ε 30)。(3)La掺杂可以提高结晶温度以及介电常数。(4)从摩尔体积变化和摩尔极化率两个方面定量分析了HfO 2/Si界面层的介电常数,并提出了设计高介电常数介电层的指导原则。2.高介电常数/Si界面层的理解和控制(1)将HfO 2/Si界面层的生长模型化为衬底取向、氧化时间和温度等参数。这一事实阐明了高k/Si界面层的生长机制与Si表面氧化有显著不同。(2)By以原子氧为氧化物种,定量地建立了界面层生长模型,提出了界面层控制的指导原则,并以此为基础,对亚纳米EOT高k氧化物进行了研究。虽然仍然需要一些优化的界面特性的改善,我们已经实现了高k栅堆叠EOT=0.8 nm和5个订单相比,SiO2的情况下,更小的漏电流。此外,我们还对高介电常数的锗离子进行了部分研究,观察到了该系统的一些新的特征,特别是在界面层中。这一结果为下一代超大规模集成电路器件提供了新的研究方向。

项目成果

期刊论文数量(108)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Permittivity Enhancement of Hf_<(1-x)>Si_xO_2 Film with High Temperature Annealing
高温退火增强Hf_<(1-x)>Si_xO_2薄膜的介电常数
Difference between O_2 and N_2 Annealing Effects on CVD-SiO_2 Film Quality Studied by Open-Circuit Measurement
开路测量研究O_2和N_2退火对CVD-SiO_2薄膜质量影响的差异
Materials Engineering for High-k Gate Stack Technology
高 k 栅极堆叠技术的材料工程
Advantages of Ge (111) Surface for High Quality HfO_2/Ge Interface
Ge(111)表面的高质量HfO_2/Ge界面的优势
Stable Observation of the Evolution of Leakage Spots in HfO_2/SiO_2 Stacked Structures
HfO_2/SiO_2叠层结构漏斑演变的稳定观察
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TORIUMI Akira其他文献

TORIUMI Akira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TORIUMI Akira', 18)}}的其他基金

Understanding and Control of Electronic Properties of Nanometer-thick Dielectric Films
纳米厚电介质薄膜电子特性的理解和控制
  • 批准号:
    19106005
  • 财政年份:
    2007
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)

相似海外基金

Investigation of novel multi-level non-volatile memory devices using ferroelectric hafnium oxide based materials for artificial synapse devises
使用铁电氧化铪基材料研究用于人工突触装置的新型多级非易失性存储器件
  • 批准号:
    21J01667
  • 财政年份:
    2021
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation on the influence of doping on ferroelectricity of hafnium oxide thin film grown using Pulsed Laser Deposition (PLD)
研究掺杂对脉冲激光沉积(PLD)氧化铪薄膜铁电性的影响
  • 批准号:
    2597614
  • 财政年份:
    2021
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Studentship
Microstructure and strain effects on ferroelectric and transport properties of hafnium oxide thin films
微观结构和应变对氧化铪薄膜铁电和输运性能的影响
  • 批准号:
    1917635
  • 财政年份:
    2019
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Standard Grant
High-k dielectrics from hafnium oxide with nanoscale inclusions: a computational study
具有纳米级夹杂物的氧化铪高 k 电介质:计算研究
  • 批准号:
    436480-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Engage Grants Program
Understanding and improving resistive-switching in hafnium-oxide-based high-k dielectrics for non-volatile memory applications
了解和改进非易失性存储器应用中氧化铪基高 k 电介质的电阻开关
  • 批准号:
    DP120101101
  • 财政年份:
    2012
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Discovery Projects
Incipient ferroelectrics based on hafnium oxide
基于氧化铪的早期铁电体
  • 批准号:
    226260235
  • 财政年份:
    2012
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Research Grants
Ferroelectric Hafnium Oxide Material Enhanced Reliability
铁电氧化铪材料增强了可靠性
  • 批准号:
    430054035
  • 财政年份:
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Research Grants
Dopant and Defect Physics for Device Optimization for Hafnium Oxide based Devices
用于氧化铪基器件的器件优化的掺杂剂和缺陷物理学
  • 批准号:
    505873959
  • 财政年份:
  • 资助金额:
    $ 76.29万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了