Statistical inference and distribution theory in exploratory projection pursuit
探索性投影追踪中的统计推断和分布理论
基本信息
- 批准号:13680380
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The exploratory projection pursuit (EPP) is a method for extracting non-linearity or non-normality from multidimensional data through maximizing the projection pursuit index and then projecting data into low-dimensional subspaces. Because of recent developments' of computers and techniques of optimization, EPP has been developing in the viewpoint of algorithm, but not yet fully developed in the viewpoint of statistical inference. The aims of this research is to make it practicable.The first step toward the practical use is to obtain the distribution of the maximum of projection pursuit index. In the first year, we characterized the limiting distribution of the maximum of the moment index (Jones and Sibson, 1987, J.Roy. Statist. Soc. Ser. A) as the maximum of a Gaussian random field, when the sample size goes to infinity. Then we derived an approximate upper tail probability of the maximum by an integral-geometric approach called the tube method or the Euler characteristic method.In these methods, the index set of the random field is regarded as a Riemannian submanifold endowed with the metric induced by it correlation structure. The approximate upper tail probability is derived as geometric characteristics of the manifold.In the second year, we evaluated the error term (remainder term) of the resulting formula. The error term is determined by so-called critical radius, which is a measure of convexity of submanifold. We conjectured the value of the critical radius through a large scale numerical experiments. However, we have not yet given any mathematical proof that the suggested value is truly the critical radius.These results were presented at the 3rd International Conference on Multiple Comparisons (MCP2002), Bethesda, Maryland, USA, August 2002.
探索性投影寻踪(EPP)是一种通过最大化投影寻踪指数从多维数据中提取非线性或非正态分布,然后将数据投影到低维子空间的方法。由于近年来计算机和优化技术的发展,EPP在算法方面有了很大的发展,但在统计推理方面还没有完全发展起来。这项研究的目的是使其具有实用性。走向实际使用的第一步是获得投影寻踪指数的最大值的分布。在第一年,我们刻画了矩指数的最大值的极限分布(Jones和Sibson,1987,J.Roy)。统计学家。SoC。先生。A)当样本大小为无穷大时,作为高斯随机场的最大值。然后,我们利用一种称为筒子法或欧拉特征线法的积分几何方法,将随机场的指标集看作具有由其相关结构诱导的度量的黎曼子流形,得到了一个近似的上尾概率。根据流形的几何特征,推导出近似的上尾概率。第二年,我们对所得公式的误差项(余项)进行了评估。误差项由所谓的临界半径决定,临界半径是子流形凸性的量度。通过大规模的数值实验,推测了临界半径的取值。然而,我们还没有给出任何数学证明来证明建议的值确实是临界半径。这些结果已于2002年8月在美国马里兰州贝塞斯达举行的第三届国际多重比较会议(MCP2002)上公布。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satoshi Kuriki, Hidetoshi Shimodaira, and Tony Hayter,: "On the isotonic range statistic for testing against an ordered alternative"Journal of Statistical Planning and Inference. Vol.105, No.2. 347-362 (2002)
Satoshi Kuriki、Hidetoshi Shimodaira 和 Tony Hayter,“关于用于测试有序替代方案的等渗范围统计”统计规划与推理杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsuhisa Miwa, Tony Hayter, Satoshi Kuriki: "The evaluation of general non-centred orthant probabilities"Journal of the Royal Statistical Society, Ser. B. 65. 223-234 (2003)
Tetsuhisa Miwa、Tony Hayter、Satoshi Kuriki:“一般非中心概率的评估”英国皇家统计学会杂志,系列。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akimichi Takemura, Satoshi Kuriki: "On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains"The Annals of Applied Probability. 12. 768-796 (2002)
Akimichi Takemura、Satoshi Kuriki:“关于分段光滑域上高斯场最大值分布的管和欧拉特征方法的等价性”应用概率年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsuhisa Miwa, Tony Hayter, Satoshi Kuriki: "The evaluation of general non-centred orthant probabilities"Journal of the Royal Statistical Society, Ser. B.. 65・1. 223-234 (2003)
Tetsuhisa Miwa、Tony Hayter、Satoshi Kuriki:“一般非中心概率的评估”英国皇家统计学会杂志,B.. 223-234(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akimichi Takemura, Satoshi Kuriki: "Maximum covariance difference test for equality of two covariance matrices"Algebraic Methods in Statistics and Probability, Contemporary Mathematics. 287. 283-302 (2001)
Akimichi Takemura、Satoshi Kuriki:“两个协方差矩阵相等的最大协方差差异检验”统计和概率中的代数方法,当代数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURIKI Satoshi其他文献
KURIKI Satoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURIKI Satoshi', 18)}}的其他基金
Fast numerical computation for multivariate distributions with combinatorial structure and its application to spatial epidemiology
组合结构多元分布的快速数值计算及其在空间流行病学中的应用
- 批准号:
21500288 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiple comparisons procedures based on integral geometry and sequential analysis and their applications to genetic linkage analysis
基于积分几何和序贯分析的多重比较程序及其在遗传连锁分析中的应用
- 批准号:
18500221 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Euler characteristic heuristics in distribution theory of random field
随机场分布理论中的欧拉特征启发式研究
- 批准号:
15500194 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral-geometric distribution theory of random field and its applications to multivariate analysis
随机场积分几何分布理论及其在多元分析中的应用
- 批准号:
11680335 - 财政年份:1999
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




