Integral-geometric distribution theory of random field and its applications to multivariate analysis
随机场积分几何分布理论及其在多元分析中的应用
基本信息
- 批准号:11680335
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A real-valued random variable with multidimensional indices is called random field. In this research we studied distribution theory of maxima of continuous random field and its applications to statistical inference including multivariate analysis. The distribution of the maxima can be obtained as upper tail probabilities via integral-geometric approach such as tube method and Euler characteristic method. We treat two cases ; one is the regular case where the index set is a closed smooth manifold, and the other is a non-regular case where the index set contains some singularities. The latter is more difficult to treat than the former. However we showed that if the index set is locally convex, the latter non-regular case can be treated similarly to the regular case.As an application to multivariate analysis, we derived the limiting null distribution of likelihood ratio test statistic for testing independence in two-way ordered categorical data. As a model for two-way categorical data where row and/or column categories are ordered, corresponding analysis models with order restricted row and/or column scores are proposed over and over again. In this model we derived an asymptotic expansion for limiting null distribution accurate enough for practical use. Also we provided computer programs to calculate the tail probabilities.Moreover, the integral-geometric method or the tube method which we use in studying the distribution of maxima, is turn to be useful in studying statistical decision theory or estimation theory. We constructed shrinkage estimators towards hypersurface and convex body, where the rate of shrinkage is determined by the curvature of projection onto the surface of convex body.
具有多维指标的实值随机变量称为随机场。本文研究了连续随机场极大值的分布理论及其在统计推断包括多元分析中的应用。最大值的分布可以通过积分几何方法(如管法和欧拉特征线法)获得上尾概率。我们处理两种情况;一种是正则情形,其中指标集是闭光滑流形,另一种是非正则情形,其中指标集包含一些奇点。后者比前者更难治疗。然而,我们证明了,如果指数集是局部凸的,后者的非正则情况下,可以类似于正常的情况下处理.作为多元分析的应用,我们得到了似然比检验统计量的极限零分布,用于测试双向有序分类数据的独立性.作为行和/或列类别有序的双向分类数据的模型,相应的分析模型与顺序限制行和/或列得分被一次又一次地提出。在这个模型中,我们导出了一个渐近展开的极限零分布足够精确的实际应用。此外,我们在研究极大值分布时所采用的积分几何方法或管方法,在研究统计决策理论或估计理论时也是有用的。我们构造了超曲面和凸体的收缩估计,其中收缩率由凸体曲面上投影的曲率决定。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satoshi Kuriki and Akimichi Takemura: "Tail probabilities of the maxima of multilinear forms and their applications"Annals of Statistics. (in press).
Satoshi Kuriki 和 Akimichi Takemura:“多线性形式最大值的尾部概率及其应用”统计年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akimichi Takemura and Satoshi Kuriki: "Shrinkage to smooth non-convex cone : principal component analysis as Stein estimation."Communications in Statistics : Theory and Methods. 28・3&4. 651-669 (1999)
Akimichi Takemura 和 Satoshi Kuriki:“平滑非凸锥体的收缩:斯坦因估计的主成分分析。”统计通讯:理论与方法 28・3&4(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Satoshi Kuriki and Akimichi Takemura: "Some geometry of the cone of nonnegative definite matrices and weights of associated χ^^<-2> distribution."Annals of the Institute of Statistical Mathematics. 52・1. 1-14 (2000)
Satoshi Kuriki 和 Akimichi Takemura:“非负定矩阵锥体的一些几何结构和相关 χ^^<-2> 分布的权重。”统计数学研究所年鉴 52・1 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Satoshi Kuriki and Akimichi Takemura: "Shrinkage estimation towards a closed convex set with a smooth boundary"Journal of Multivariate Analysis. Vol.75, No.1. 79-111 (2000)
Satoshi Kuriki 和 Akimichi Takemura:“对具有平滑边界的闭凸集的收缩估计”多元分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Satoshi Kuriki and Akimichi Takemura: "Some geometry of the cone of nonnegative definite matrices and weights of associated chi-bar-squared distribution"Annals of the Institute of Statistical Mathematics. 52・1. (2000)
Satoshi Kuriki 和 Akimichi Takemura:“非负定矩阵锥体的一些几何形状和相关卡方平方分布的权重”统计数学研究所年鉴 52・1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KURIKI Satoshi其他文献
KURIKI Satoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KURIKI Satoshi', 18)}}的其他基金
Fast numerical computation for multivariate distributions with combinatorial structure and its application to spatial epidemiology
组合结构多元分布的快速数值计算及其在空间流行病学中的应用
- 批准号:
21500288 - 财政年份:2009
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiple comparisons procedures based on integral geometry and sequential analysis and their applications to genetic linkage analysis
基于积分几何和序贯分析的多重比较程序及其在遗传连锁分析中的应用
- 批准号:
18500221 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Euler characteristic heuristics in distribution theory of random field
随机场分布理论中的欧拉特征启发式研究
- 批准号:
15500194 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical inference and distribution theory in exploratory projection pursuit
探索性投影追踪中的统计推断和分布理论
- 批准号:
13680380 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2306726 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
- 批准号:
23H05437 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
- 批准号:
23K03106 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
- 批准号:
23K19016 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
- 批准号:
EP/W036320/1 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Research Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)