User's Intention Understanding Using Multi-modal Information for Intelligent Interfaces

利用智能界面的多模态信息理解用户意图

基本信息

  • 批准号:
    13680471
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

This research developed a framework of user's intention understanding using multi-modal information, and enabled natural and robust, intelligent man-machine interface.In generally, intention understanding processes are constructed from following three stages. (A) Tracking of humans walking around the system. (B) Detection of a human coming up to the system, and confirmation of one's intention of use the system. (C) User's intention understanding for man-machine dialogue. Traditional researches focused on only one of those stages but not transition between stages. Therefore, natural dialogue interface is not developed yet.This research focused on (B), (C) and transitions between them and got following three results, while results of traditional researches were used for (A). (1) When the system detects a human coming up to, the system gathers information using a new active-vision method and confirm his/her intention implicitly. This implicit confirmation enables natural transitions from (B) to (C). (2) In the stage (C), a combination of a vision based lip-reading and a. context analysis with the traditional spoken language recognition, which enables high recognition accuracy, was proposed. Using the proposed methods for (B) and (C), a very robust dialogue system could be developed. (3) The recognition accuracy for dialogues, however, was very high but not perfect. Therefore, a touch-panel device and menus on it were additionally introduced, and a new modal switching method was proposed. Using this method, user can communicate with the system using audio-visual dialogue as frequently as possible under being premised on a perfect success.
本研究发展了一个使用多模态信息的用户意图理解框架,并实现了自然、健壮、智能的人机界面。(A)跟踪在系统中行走的人。(B)检测到有人接近系统,并确认某人使用系统的意图。(C)人机对话中的用户意图理解。传统的研究只关注其中的一个阶段,而忽视了阶段之间的过渡。本研究主要针对(B)、(C)以及两者之间的转换进行研究,并取得以下三个结果,而传统研究的结果则用于(A)。(1)当系统检测到有人走近时,系统使用新的主动视觉方法收集信息,并隐含地确认他/她的意图。这种隐式确认使得能够实现从(B)到(C)的自然转换。(2)在阶段(C)中,基于视觉的唇读和基于视觉的唇读的组合。提出了具有传统口语识别的上下文分析,其能够实现高识别准确度。使用针对(B)和(C)提出的方法,可以开发非常鲁棒的对话系统。(3)然而,对对话的识别准确率非常高,但并不完美。为此,增加了触摸屏设备和菜单,并提出了一种新的模式切换方法。使用该方法,用户可以在保证成功的情况下,尽可能频繁地使用视听对话与系统进行交流。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Takahashi, T.Morimoto, S.Maeda, N.Tsuruta: "Robust Speech Understanding Based on Expected Discourse Plan"Proc.of the EUROSPEECH. 1. 661-664 (2003)
S.Takahashi、T.Morimoto、S.Maeda、N.Tsuruta:“基于预期话语计划的鲁棒语音理解”Proc.of the EUROSPEECH。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naoyuki TSURUTA, Tarek EL.Tobely, Yuichiro YOSHIKI: "A Randmized Self-organizing Map for Gesture Recognition"Int. Journal of Japan Society for Fuzzy Theory and Systems. 14-1. 82-87 (2002)
Naoyuki TSURUTA、Tarek EL.Tobely、Yuichiro YOSHIKI:“用于手势识别的随机自组织映射”Int。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Tsuruta, Y.Yoshiki, T.El.Tobely: "A Randomized Hypercolumn Model and Gesture Recognition"Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, Springer. LNCS 2084. 235-242 (2001)
N.Tsuruta、Y.Yoshiki、T.El.Tobely:“随机超柱模型和手势识别”神经元、学习过程和人工智能的连接主义模型,施普林格。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Tsuruta: "A Randomized Hypercolumn Model and Gesture Recognition"Lecture notes in computer science, (Springer(IWANN2001)). 2084. 235-242 (2001)
N.Tsuruta:“随机超列模型和手势识别”计算机科学讲义,(Springer(IWANN2001))。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSURUTA Naoyuki其他文献

TSURUTA Naoyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSURUTA Naoyuki', 18)}}的其他基金

Development and Practice of a New Activity Type Information Processing Education from Elementary School to High School
小学至高中新型活动式信息处理教育的发展与实践
  • 批准号:
    23501038
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ON A MODELING AND APPLICATION OF HIGH LEVEL VISUAL SEARCH
高级视觉搜索的建模和应用
  • 批准号:
    08680403
  • 财政年份:
    1996
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
High speed multi modal in-situ Transmission Electron Microscopy platform
高速多模态原位透射电子显微镜平台
  • 批准号:
    LE240100060
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
MUSE: Multi-Modal Software Evolution
MUSE:多模式软件演进
  • 批准号:
    EP/W015927/2
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
Multi-scale, multi-modal X-ray imaging using speckle
使用散斑的多尺度、多模态 X 射线成像
  • 批准号:
    DE220101402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Early Career Researcher Award
Multi-modal electron microscopy of 3D racetrack memory
3D 赛道记忆的多模态电子显微镜
  • 批准号:
    EP/X025632/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Enhancing STEM Success: A Multi-modal Investigating of Spatial Reasoning and Training in Undergraduate Education
促进 STEM 成功:本科教育空间推理和培训的多模式研究
  • 批准号:
    2300785
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Multi-modal non-invasive biomarker screening for high-risk undiagnosed liver disease
针对高危未确诊肝病的多模式非侵入性生物标志物筛查
  • 批准号:
    10073169
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了