Hecguard Splittings and genetic structures of 3-manifolds

Hecguard 分裂和 3 流形的遗传结构

基本信息

  • 批准号:
    14340023
  • 负责人:
  • 金额:
    $ 6.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

The main results obtained by this project are as follows.1.Akiyoshi, Sakuma, Wada and Yamashita have completed a preprint (256 pages) which gives a full exposition of Jorgensen's theory for the Ford domains of quasifuchsian punctured torus groups, including a full proof. We plan to write a sequel of the paper to explain our extension of his theory to the outside of the quasifuchsian punctured torus space and to explain the relationship between the bridge structure of a 2-bridge knot and the complete hyperbolic structure of its complement.2.Epstein-Penner has introduced the Euclidean decompositions of finite-volume cusped hyperbolic manifolds through a convex hull construction in the Minkowski space. Akiyoshi-Sakuma has generalized the construction to (possibly) infinite-volume cusped hyperbolic manifolds and introduced EPH-decompositions of these manifolds. Moreover, relation between the EPH-decompositions and the bending laminations of cusped hyper-bolic manifolds were studied by Akiyoshi-Sakuma-Wada Yamashita.3.Akiyoshi-Miyachi-Sakuma have generalized Bowditch's variation of McShane's identity for hyperbolic punctured torus bundles to general hyperbolic punctured surface bundles.
本项目的主要结果如下:1. Akiyoshi,Sakuma,Wada和Yamashita完成了一份预印本(256页),全面阐述了Jorgensen关于拟Fuchsian穿孔环面群的福特域的理论,并给出了完整的证明。我们计划写一个续集的文件,以解释我们的扩展,他的理论以外的拟fuchsian穿孔环面空间,并解释之间的关系的桥梁结构的2桥结和完整的双曲结构的补充。2.Epstein-Penner通过一个凸船体建设的Minkowski空间中引入了有限体积尖双曲流形的欧氏分解。Akiyoshi-Sakuma将这种构造推广到(可能)无限体积尖点双曲流形,并引入了这些流形的EPH-分解。Akiyoshi-Miyachi-Sakuma将双曲穿孔环面丛的McShane恒等式的Bowditch变分推广到一般双曲穿孔曲面丛。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A refinement of McShane's identity for quanguchsian punctures tones groups
McShane 对 quaguchsian 穿刺音组身份的改进
H.Akiyoshi, M.Sakuma, M.Wada, Y.Yamashita: "Jorgensen's picture of quasifuchsian punctured torus groups"London Math Soc Lecture Note Series. 299. 247-273 (2003)
H.Akiyoshi、M.Sakuma、M.Wada、Y.Yamashita:“Jorgensen 的拟福赫斯穿孔环面群的图片”伦敦数学学会讲义系列。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Complexification of Lambda Length as Parameter for SL(2,C)-Rep. Space of Punctured Surface Groups
Lambda 长度的复数作为 SL(2,C)-Rep 的参数。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Nakanishi;M.Naatanen
  • 通讯作者:
    M.Naatanen
Comparing two convex hull constructions of cusped hyperbolic manifolds
比较尖点双曲流形的两种凸包结构
Teichmuller spaces of once-punctured tori
一次刺穿环面的 Teichmuller 空间
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKUMA Makoto其他文献

SAKUMA Makoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKUMA Makoto', 18)}}的其他基金

Heegaard structures and geometric structures of 3-manifolds
Heegaard 结构和 3 流形的几何结构
  • 批准号:
    18340018
  • 财政年份:
    2006
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Heegaand spliffings and hyperbolic structures of 3-manifolds
Heegaand spliffings 和 3 流形的双曲结构
  • 批准号:
    09440033
  • 财政年份:
    1997
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on hemocompatibility and antithrombotic characeristics of the small caliver vascular prosthesis
小口径人工血管血液相容性及抗血栓特性研究
  • 批准号:
    05670980
  • 财政年份:
    1993
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Study of anastomotic neointimal hyperplasia after vascular prosthesis implantation. Its mechanism and prevention.
人工血管植入后吻合口新生内膜增生的研究。
  • 批准号:
    03670575
  • 财政年份:
    1991
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
A Study of Anastomotic Neointimal Hyperplasia After Graft Inplantation.
移植物植入后吻合口新内膜增生的研究。
  • 批准号:
    01570699
  • 财政年份:
    1989
  • 资助金额:
    $ 6.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了