Study of recent topics on operator algebras

算子代数近期课题研究

基本信息

  • 批准号:
    14340056
  • 负责人:
  • 金额:
    $ 7.94万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

The following four topics were mentioned in our research plan.1.Jones index theory and Hopf algebraMasuda obtained an alternative proof for Popa's classification of type III_1-subfactors, and also succeeded in classifying many classes of group actions in the subfactor setting. Izumi and Kosaki analyzed structure of Kac algebras (i.e., Hopf algebras equipped with ^*-structure) via index theoretical approach, and completely classified Kac algebras of dimension up to 31. As a related topic, a notion of the second coholomogy for a subfactor was introduced and studied.2.Amalgamated free product of type III factors and free product of groupoidsKosaki constructed amalgamed free products of measurable equivalence relations. The resulting objects are groupoids, and their basic properties were clarified. Ueda studied free products and related operator algebras based on free probability.3.C^*-algebras arising from graphs, Hilbert C^*-bimodules, subshifts and complex dynamical systemsKajiwara-Wata … More tani and Matsumoto studied properties of various C^*-algebras and their invariants (such as K-theory and entropies). Kajiwara-Watatani dealt with C^*-algebras arising from Hilbert C^*-bimodules and complex dynamical systems while Matsumoto dealt with those arising from subshifts and λ-graph systems. Hamachi investigated embedding problems for symbolic dynamical systems. Izumi obtained beautiful classification results on finite group actions with Rohlin property on certain C^*-algebras.4.Operator meansHiai (Tohoku Univ.) and Kosaki made systematic studies on operator means and their norm comparison. These together with information on positive definiteness of relevant functions will bring us many new norm inequalities for operator means, and hence research in this direction seems to be further enriched. Uchiyama obtained many new results on operator monotone functions (playing important roles in comparison of operators), which enabled him to obtain a certain interpretation for index requirements in the Furuta inequality. Less
本文的研究计划包括以下四个方面:1. Jones指标理论和Hopf代数Masuda对Popa的III_1型子因子分类给出了一个替代性的证明,并成功地对许多类群作用在子因子下进行了分类。Izumi和Kosaki分析了Kac代数的结构(即,Hopf代数),并对维数不超过31的Kac代数进行了完全分类。2. III型因子的自由积与群胚的自由积的混合Kosaki构造了可测等价关系的自由积的混合.生成的对象是groupoid,并且它们的基本属性已得到澄清。上田在自由概率的基础上研究了自由积和相关的算子代数。3.由图、Hilbert C^*-双模、子移位和复动力系统产生的C ^*-代数 ...更多信息 tani和松本研究了各种C^*-代数及其不变量的性质(如K-理论和熵)。Kajiwara Watatani处理的C^*-代数所产生的希尔伯特C^*-双模和复杂的动力系统,而松本处理的那些所产生的子移位和λ-图系统。Hamachi研究了符号动力系统的嵌入问题。Izumi在某些C^*-代数上得到了具有Rohlin性质的有限群作用的漂亮分类结果。和Kosaki对算子均值及其范数比较进行了系统的研究。这些结果与相关函数的正定性信息一起,将为我们带来许多新的算子平均范数不等式,从而进一步丰富了这方面的研究。内山在算子单调函数(在算子的比较中起着重要作用)方面获得了许多新的结果,这使他对古田不等式中的指标要求得到了一定的解释。少

项目成果

期刊论文数量(127)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finite group actions on C*-algebras with the Rohlin property, I
  • DOI:
    10.1215/s0012-7094-04-12221-3
  • 发表时间:
    2004-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Masaki Izumi
  • 通讯作者:
    Masaki Izumi
Irreducible subfactors of LF∞ of index λ >4
指数 λ >4 的 LF∞ 的不可约子因子
  • DOI:
    10.1515/crll.2002.057
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Shlyakhtenko;Y. Ueda
  • 通讯作者:
    Y. Ueda
Group symmetry in tensor categories and duality for orbifolds
张量范畴中的群对称性和轨道折叠的对偶性
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Yamagami
  • 通讯作者:
    S.Yamagami
Operator Algebra and Applications(Proc.of US-Japan Seminar)
算子代数及其应用(美日研讨会论文集)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Nishino;T.Terasawa;M.Hoshino;H.Kosaki(editor)
  • 通讯作者:
    H.Kosaki(editor)
F.Hiai, H.Kosaki: "Means of Hilbert Space Operators"Springer Verlag (Lecture Notes in Mathematics, Vol.1820). VIII+148 (2003)
F.Hiai、H.Kosaki:“希尔伯特空间算子的方法”Springer Verlag(数学讲义,第 1820 卷)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOSAKI Hideki其他文献

KOSAKI Hideki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOSAKI Hideki', 18)}}的其他基金

Study on operator means and related topics
算子手段及相关课题研究
  • 批准号:
    26400120
  • 财政年份:
    2014
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on operator inequalities based on various analytic methods
基于多种解析方法的算子不等式研究
  • 批准号:
    23540215
  • 财政年份:
    2011
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on operator theory and operator means
算子理论及算子手段研究
  • 批准号:
    19340035
  • 财政年份:
    2007
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on subfactors
子因素研究
  • 批准号:
    09304017
  • 财政年份:
    1997
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).

相似海外基金

Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
  • 批准号:
    1700825
  • 财政年份:
    2017
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Standard Grant
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Discovery Grants Program - Individual
Application of Mirror extension of vertex operator algebra using Hopf algebra theory
Hopf代数理论在顶点算子代数镜像扩展中的应用
  • 批准号:
    16F16020
  • 财政年份:
    2016
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf algebra actions
Hopf 代数动作
  • 批准号:
    480409-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 7.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Hopf algebra actions
Hopf 代数动作
  • 批准号:
    488549-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 7.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial hopf algebra of polytopes and structure constants
多胞形和结构常数的组合 hopf 代数
  • 批准号:
    452279-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 7.94万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Hopf algebra actions on rings
Hopf 代数对环的作用
  • 批准号:
    461509-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 7.94万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了