Wide applications of the renormalization group

重整化群的广泛应用

基本信息

  • 批准号:
    14340077
  • 负责人:
  • 金额:
    $ 9.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

We have applied renormalization group (RG) techniques to both quantum field theory and statistical physics. The research in quantum field theory was led by Sonoda, and that in statistical physics by Nishino.In the applications to quantum field theory, the following results have been obtained:1. Parametrization of the solutions to the exact RG equations was introduced by examining the behavior of the solutions at a large momentum cutoff2. The exact RG equation has been reformulated as an integral equation, which gives a formal perturbative solution.3. The parametrization described in 1 has been applied to QED. The Ward identities constrain the parameters.In the applications to statistical physics, the following results have been obtained:1. Avery fast numerical method of the product wave function RG has been developed.2. Generalizing the matrix products to tensor products, we have formulated the tensor product RG variational method, which can be considered as an extension of the density matrix RG method to higher dimensional systems.3. Extending the density matrix RG method, we have obtained the stochastic light-cone density matrix RG and the method of snapshot generation. These have been applied to statistical systems, resulting in phase diagrams of 2-and 3-dimensional ANNNI models, and the symmetric 16-vertex model.
我们已将重正化群 (RG) 技术应用于量子场论和统计物理学。园田主导了量子场论的研究,西野主导了统计物理学的研究。在量子场论的应用方面,取得了以下成果: 1.通过检查大动量截止下解的行为,引入了精确 RG 方程解的参数化2。精确的RG方程被重新表述为积分方程,给出了形式的微扰解。 3. 1 中描述的参数化已应用于 QED。 Ward恒等式对参数进行约束。在统计物理应用中,得到了以下结果: 1.发展了一种快速的乘积波函数RG数值方法。 2.将矩阵积推广到张量积,提出了张量积RG变分法,该方法可以看作是密度矩阵RG法向高维系统的推广。 3.对密度矩阵RG方法进行扩展,得到了随机光锥密度矩阵RG和快照生成方法。这些已应用于统计系统,产生 2 维和 3 维 ANNNI 模型以及对称 16 顶点模型的相图。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E.Kaneshita, M.Ichioka, K.Machida: "Study of phonon anomalies in stripe phase of high Tc cuprates"Physical B. (To be published).
E.Kaneshita、M.Ichioka、K.Machida:“高 Tc 铜酸盐条纹相中声子异常的研究”物理 B.(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Stable optimization of tensor product variational functions
张量积变分函数的稳定优化
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Gendiar;T.Nishino
  • 通讯作者:
    T.Nishino
Bootstrapping perturbative perfect actions,
引导扰动的完美动作,
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E.Itou;K.Higashijima;H.Sonoda
  • 通讯作者:
    H.Sonoda
Snapshot Observation for 2D Classical Lattice Models by CTMRG
CTMRG 的二维经典晶格模型快照观察
A.Gendiar: "Stable Optimization of Tensor Product Variational Functions"Prog.Theor.Phys.. 110. 691-699 (2003)
A.Gendiar:“张量积变分函数的稳定优化”Prog.Theor.Phys.. 110. 691-699 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SONODA Hidenori其他文献

SONODA Hidenori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SONODA Hidenori', 18)}}的其他基金

Derivation of non-renormalization theorems using the exact renormalization group
使用精确重整化群推导非重整化定理
  • 批准号:
    22540282
  • 财政年份:
    2010
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of field theory at high temperatures
高温场论研究
  • 批准号:
    11640279
  • 财政年份:
    1999
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Advancement of density matrix renormalization group - Adaptation to point group symmetry
密度矩阵重整化群的进展——对点群对称性的适应
  • 批准号:
    17K14359
  • 财政年份:
    2017
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
To the limits of the density matrix renormalization group in quantum chemistry, and beyond
量子化学中密度矩阵重整化群的极限及其他
  • 批准号:
    1665333
  • 财政年份:
    2017
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Continuing Grant
Spin and charge currents through contacted quantum spin chains: A time-dependent density matrix renormalization group study
通过接触量子自旋链的自旋和电荷电流:时间相关的密度矩阵重正化群研究
  • 批准号:
    344071920
  • 财政年份:
    2017
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grants
Studying Phase Transitions and Entanglement Entropy in Condensed Matter Systems using Density Matrix Renormalization Group Techniques
使用密度矩阵重整化群技术研究凝聚态系统中的相变和纠缠熵
  • 批准号:
    480888-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Numerical study of many-body localization and the associated quantum phase transitions employing the finite-temperature density-matrix-renormalization group
利用有限温度密度矩阵重正化群对多体局域化和相关量子相变进行数值研究
  • 批准号:
    285706534
  • 财政年份:
    2015
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grants
Investigation of the influence of chirality and frustration on magnetic properties of large molecule-based spin systems withDynamical Density Matrix Renormalization Group and relate methods
利用动态密度矩阵重正化群及相关方法研究手性和挫败对大分子自旋系统磁性能的影响
  • 批准号:
    252968872
  • 财政年份:
    2014
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grants
Density matrix renormalization group study on quantum systems of multiple degrees of freedom
多自由度量子系统的密度矩阵重整化群研究
  • 批准号:
    26400344
  • 财政年份:
    2014
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Density Matrix Renormalization Group in Hybrid Momentum Space
混合动量空间中的密度矩阵重整化群
  • 批准号:
    229009897
  • 财政年份:
    2013
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Units
Theory and its applications based on density matrix renormalization group for multiple-electronic-state chemical processes
基于密度矩阵重整化群的多电子态化学过程理论及其应用
  • 批准号:
    25288013
  • 财政年份:
    2013
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Density Matrix Renormalization Group Studies of Frustrated and Doped Systems
受阻和掺杂系统的密度矩阵重整化群研究
  • 批准号:
    0907500
  • 财政年份:
    2009
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了