Convergence of Riemannian manifolds and spectrum of Laplacian

黎曼流形的收敛性和拉普拉斯谱

基本信息

  • 批准号:
    14540056
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

Let M_i→M and Y_i→Y, i=1,2,3,..., be two Gromov-Hausdorff convergent sequences of proper metric spaces, where ‘proper' means that any closed bounded set is compact. We give Radon measures on all M_i and M, and assume that the measure on M_i weakly converges to that on M. We are interested in the asymptotic behavior and convergence of maps u_i : M_i→Y_i. We introduce a concept of L^p-convergence of such u_i to a map u : M→Y,p【greater than or equal】1, and establish a theory of convergence of energy functionals E_i defined on the mapping space {u : M_i→Y_i} by generalizing Mosco's variational convergences. Mosco defined the asymptotically compactness of {E_i}, as a generalization of the Rellich compactness. The asymptotic compactness is useful to obtain the convergence of energy minimizers, i.e., harmonic maps. Under a uniform bound of the Poincare constant for E_i and some condition on the metric structure of M, we prove the asymptotic compactness of {E_i}. We say that E_i compactly converges to a functional E on {u : M→Y} if E_i Γ-converges to E and if {E_i} is asymptotically compact. We prove that the compact convergence E_i→E is equivalent to the Gromov-Hausdorff convergence of the E_i-sublevel sets to the E-sublevel sets. This gives a geometric interpretation of the compact convergence. Assume in addition that Y_i are all CAT(0)-spaces and E_i are convex and lower semi-continuous. Then, we prove that the compact convergence E_i→E is equivalent to the convergence of the corresponding resolvents, where the resolvents for E_i and E are defined by using the minimizers of the Moreau-Yosida approximation. As applications, we investigate the spectra of the Korevaar-Schoen approximating energy forms. We also obtain the compactness of the energy functionals over Riemannian manifolds under a bound of Ricci curvature.
设M_i→M, Y_i→Y, i=1,2,3,…,是两个正则度量空间的Gromov-Hausdorff收敛序列,其中“正则”表示任何闭有界集合都是紧的。我们给出了所有M_i和M上的Radon测度,并假设M_i上的Radon测度弱收敛于M上的Radon测度。我们对映射u_i: M_i→Y_i的渐近性和收敛性感兴趣。我们引入了映射u: M→Y,p【大于等于】1的L^p收敛的概念,并通过推广Mosco变分收敛,建立了定义在映射空间{u: M_i→Y_i}上的能量泛函E_i的收敛理论。Mosco定义了{E_i}的渐近紧性,作为Rellich紧性的推广。渐近紧性有助于得到能量极小值的收敛性,即调和映射。在E_i的庞加莱常数的一致界和M的度量结构的某些条件下,证明了{E_i}的渐近紧性。我们说E_i紧收敛于{u: M→Y}上的一个泛函E,如果E_i Γ-converges趋近于E,如果{E_i}是渐近紧的。证明了E_i→E的紧收敛等价于E_i-子水平集到E-子水平集的Gromov-Hausdorff收敛。这给出了紧收敛性的几何解释。另外假设Y_i都是CAT(0)-空间,E_i是凸且下半连续的。然后,我们证明了E_i→E的紧收敛性等价于对应解的收敛性,其中E_i和E的解是用Moreau-Yosida近似的极小值来定义的。作为应用,我们研究了korevar - schoen近似能量形式的谱。我们还得到了黎曼流形上能量泛函在里奇曲率界下的紧性。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kuwae, T.Shioya: "Sobolev and Dirichiet spaces over maps between metric spaces"J.Reine Angery.Math.. 555. 39-75 (2003)
K.Kuwae、T.Shioya:“度量空间之间的映射上的 Sobolev 和 Dirichiet 空间”J.Reine Angery.Math.. 555. 39-75 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Shiohama, T.Shioya, M.Tanaka: "The Geometry of Total Curvature on Complete Open Surfaces"Cambridge University Press. 284 (2003)
K.Shiohama、T.Shioya、M.Tanaka:“完全开放曲面上总曲率的几何”剑桥大学出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kuwae, T.Shioya: "Sobolev and Dirichlet spaces over maps between metric spaces"Journal fur die Reine und Ange. Mat.. (掲載予定).
K.Kuwae、T.Shioya:“度量空间之间的映射上的索博列夫和狄利克雷空间”Journal Fur die Reine und Ange..(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Non-symmetric perturbations of symmetric Dirichlet forms
  • DOI:
    10.1016/j.jfa.2003.10.005
  • 发表时间:
    2004-03
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    P. Fitzsimmons;K. Kuwae
  • 通讯作者:
    P. Fitzsimmons;K. Kuwae
Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIOYA Takashi其他文献

SHIOYA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIOYA Takashi', 18)}}的其他基金

Geometry of measure concentration and curvature
测量浓度和曲率的几何形状
  • 批准号:
    23540066
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal mass transport on Alexandrov spaces and Ricci curvature
Alexandrov 空间和 Ricci 曲率上的最优质量传输
  • 批准号:
    20540058
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gromov-Hausdorff convergence and a theory of variational convergences
Gromov-Hausdorff 收敛性和变分收敛理论
  • 批准号:
    17540058
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on Alexandrov Spaces
Alexandrov空间分析
  • 批准号:
    11440023
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Gromov-Hausdorff convergence and Geometric Analysis
Gromov-Hausdorff 收敛性和几何分析
  • 批准号:
    16K17585
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Gromov-Hausdorff convergence and a theory of variational convergences
Gromov-Hausdorff 收敛性和变分收敛理论
  • 批准号:
    17540058
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了