Gromov-Hausdorff convergence and a theory of variational convergences
Gromov-Hausdorff 收敛性和变分收敛理论
基本信息
- 批准号:17540058
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In these days, the study of geometric analysis on metric measure spaces is going around. The head investigator, Shioya, Studies such a subject and his main interest is curvature of metric measure spaces and convergence, especially Alexandrov spaces, Ricci curvature of metric measure spaces, and Gromov-Hausdorff convergence of metric measure spaces. On he other hand, Mosco studied variational convergences, which is a functional analytic theory of convergence of Dirichlet energy forms. We, Shioya and the investigator, Kuwae, thought that Mosco's theory is deeply related with the study of convergence of metric measure spaces, and have extended the theory in the geometric viewpoint. We have completed it in the period of this project. The concept of convergence in our theory is nowadays called the Mosco-Kuwae-Shioya convergence and is being widely applied to the finite dimensional method in probability theory and also to some homogenization problems.Another study is on a Laplacian comparison theorem and a splitting theorem on Alexandrov spaces with some condition corresponding to a lower bound of Ricci curvature. This is still on going. For Riemannian manifods, the Ricci curvature being bounded below is equivalent to an infinitesimal version of the Bishop-Gromov inequality. Since it is impossible to define the Ricci curvature tensor on Alexandrov spaces, we consider the infinitesimal Bishop-Gromov inequality instead of the Ricci curvature bound. Different from Riemannian, the cut-locus is not necessarily a closed set in an Alexandrov space. That may even be a dense set. By this reason, the same proof as for Riemannian manifolds does not work and we develop a new method of proof.
近年来,关于度量测度空间的几何分析的研究正在兴起。首席研究员 Shioya 研究这样一个课题,他的主要兴趣是度量测度空间的曲率和收敛性,特别是 Alexandrov 空间、度量测度空间的 Ricci 曲率和度量测度空间的 Gromov-Hausdorff 收敛性。另一方面,莫斯科研究了变分收敛,这是狄利克雷能量形式收敛的泛函分析理论。我们Shioya和研究者Kuwae认为Mosco的理论与度量测度空间收敛性的研究有很深的联系,并从几何的角度扩展了该理论。我们在这个项目期间已经完成了。我们理论中的收敛概念现在被称为Mosco-Kuwae-Shioya收敛,并且被广泛应用于概率论中的有限维方法以及一些均质化问题。另一项研究是拉普拉斯比较定理和Alexandrov空间上的分裂定理,其条件对应于里奇曲率的下界。这件事还在继续。对于黎曼流形,下面有界的 Ricci 曲率相当于 Bishop-Gromov 不等式的无穷小版本。由于不可能在 Alexandrov 空间上定义 Ricci 曲率张量,因此我们考虑无穷小的 Bishop-Gromov 不等式而不是 Ricci 曲率界。与黎曼不同,割轨迹不一定是 Alexandrov 空间中的闭集。这甚至可能是一个密集集。因此,与黎曼流形相同的证明不起作用,我们开发了一种新的证明方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fixed point sets of parabolic isometries of CAT(O)-spaces
CAT(O) 空间抛物线等距的不动点集
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Fujiwara;Koji; Shioya;Takashi; Koichi Nagano
- 通讯作者:Takashi; Koichi Nagano
Variational convergence over metric spaces
- DOI:10.1090/s0002-9947-07-04167-0
- 发表时间:2005-05
- 期刊:
- 影响因子:1.3
- 作者:K. Kuwae;T. Shioya
- 通讯作者:K. Kuwae;T. Shioya
Looking at curved spaces---From an introduction to geometry to the Poincare conjecture---
看弯曲空间---从几何导论到庞加莱猜想---
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Shioya;Takashi
- 通讯作者:Takashi
Maximal principles for subharmonic functions via local semi-Dirichlet forms
通过局部半狄利克雷形式的次谐波函数的极大原理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:K.Fujiwara;T.Shioya;K.Nagano;K.Kuwae
- 通讯作者:K.Kuwae
Fixed point sets of parabolic isometries of CAT(0)-spaces
- DOI:10.4171/cmh/54
- 发表时间:2004-08
- 期刊:
- 影响因子:0.9
- 作者:K. Fujiwara;Koichi Nagano;T. Shioya
- 通讯作者:K. Fujiwara;Koichi Nagano;T. Shioya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIOYA Takashi其他文献
SHIOYA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIOYA Takashi', 18)}}的其他基金
Geometry of measure concentration and curvature
测量浓度和曲率的几何形状
- 批准号:
23540066 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimal mass transport on Alexandrov spaces and Ricci curvature
Alexandrov 空间和 Ricci 曲率上的最优质量传输
- 批准号:
20540058 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Convergence of Riemannian manifolds and spectrum of Laplacian
黎曼流形的收敛性和拉普拉斯谱
- 批准号:
14540056 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on Alexandrov Spaces
Alexandrov空间分析
- 批准号:
11440023 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant