Kahler metrics of constant curvature on complex manifolds and topological invariants

复流形上常曲率的卡勒度量和拓扑不变量

基本信息

项目摘要

The Futaki invariant is an obstruction to the existence of Kahler-Einstein metrics. In this research we give an relation between the Futaki invariant and the Witten's holonomy of a fiber bundle with fiber F and base space B where F is a compact complex manifold and B is the circle. This result is published inK.Tsuboi, On the Einstein-Kahler metric and the holonomy of a line bundle, Proc.Edinburgh Math.Soc., Vol.45(2002), 83-90.The sphere of zero or one or three dimension have a group structure. In this research using this structure we give a new formula for the fixed point data of finite group action on compact almost complex manifolds. This result is published inK.Tsuboi, A fixed point formula for compact complex manifolds, J.Math.Kyoto Univ., Vol. 42 (2002), 1-20.Group action on manifolds represents the symmetry of manifolds. In this research we made a discovery of a new method to use the equivariant determinant of elliptic operators as an obstruction to the existence of finite group actions on compact manifolds. This result is published inK.Tsuboi, The finite group action and the equivariant determinant of elliptic operators, J.Math.Soc.Japan, vol.57 (2005), 95-113.
Futaki不变量是Kahler-Einstein度规存在的障碍。本文给出了具有纤维F和基空间B的纤维丛的Futaki不变量与维滕完整性之间的关系,其中F是紧致复流形,B是圆.这一结果发表在K.Tsuboi,On the Einstein-Kahler metric and the holonomy of a line bundle,Proc.Edinburgh Math.Soc.,Vol.45(2002),83- 90.零维、一维或三维球面具有群结构。利用这种结构,我们给出了紧致几乎复流形上有限群作用的不动点数据的一个新公式。这个结果发表在K.Tsuboi,紧致复流形的不动点公式,J.Math.京都大学,42(2002),1- 20.流形上的群作用表示流形的对称性。在这项研究中,我们发现了一个新的方法,使用椭圆算子的等变行列式作为一个障碍,有限群作用的存在性紧流形。这个结果发表在K.Tsuboi,有限群作用和椭圆算子的等变行列式,J.Math.Soc.Japan,vol.57(2005),95-113。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The finite group action and the equivariant determinant of elliptic operators
椭圆算子的有限群作用和等变行列式
A fixed point formula for compact complex manifolds
紧复流形的不动点公式
K.Tsuboi: "Pseudo-free action of cyclic groups"Kokyuroku, RIMS, Kyoto Univ.. 1329. 26-35 (2003)
K.Tsuboi:“循环群的伪自由作用”Kokyuroku,RIMS,京都大学. 1329. 26-35 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Futaki, T.Mabuchi: "Moment maps and multilinear bilinear forms associated with symplectic classes"Asian J. Math. 6. 349-372 (2002)
A.Futaki、T.Mabuchi:“与辛类相关的矩图和多线性双线性形式”Asian J. Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The equivariant determinant of elliptic operators and the group action
椭圆算子的等变行列式和群作用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Kenji其他文献

Development of a 7-T Force-Balanced Model Coil for SMES-Quench Properties
开发用于 SMES 淬火特性的 7-T 力平衡模型线圈
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TANAKA Norihiro;NOMURA Shinichi;KASUYA Koji;TSUBOI Kenji;TSUTSUI Hiroaki;TSUJI-HO Shunji;SHIMADA Ryuichi
  • 通讯作者:
    SHIMADA Ryuichi

TSUBOI Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Kenji', 18)}}的其他基金

The finite group action and the equivariant determinant of elliptic operators
椭圆算子的有限群作用和等变行列式
  • 批准号:
    17540066
  • 财政年份:
    2005
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Einstein metric on complex manifolds and the lifted Futaki invariant
复流形上的爱因斯坦度量和提升的 Futaki 不变量
  • 批准号:
    09640094
  • 财政年份:
    1997
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The determination of the nonlinear term by the bifurcating curve of a solution of a nonlinear boundary valne problem
非线性边值问题解的分叉曲线确定非线性项
  • 批准号:
    05640157
  • 财政年份:
    1993
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Gravitational instantons and the topology of 4-dimensional manifolds
引力瞬子和 4 维流形的拓扑
  • 批准号:
    62540024
  • 财政年份:
    1987
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了