Differential equations and theory of submanifolds

微分方程和子流形理论

基本信息

项目摘要

I proved the homogeneity of isoparametric hypersurfaces with six principal curvatures with multiplicity two, which I had been tackling for several years. I also got a new proof of Dorfmeister-Neher's theorem which treats the multiplicity one case, in a unified manner.Investigating the resulted homogeneous hypersurfaces, I got the following As was known in the case of multiplicity one, the hypersurfaces with 6 principal curvatures are given as a fibration over those with 3 principal curvature, where the fibers aret otally geodesic spheres. In the case of multiplicity two, the fiber dimension is six, while in the case of multiplicity one, this is three. Discovery of the fibration structure is an extension of our former results on the degenerate Gauss mapping which was done with G. Ishikawa and M. Kimura.Moreover, using the fact that the family of isoparametric hypersurfaces fill the ambient space, we get an interesting relation between 13-dimensional sphere and 7-dimensional sphere. Furthermore, using that these hypersurfaces are given as orbits of the exceptional group G_2, we can show that there exists a metric on S^7-CP^2 of which holonomy group is G_2. From this, a real open version of Calabi conjecture will be considered, i.e., when a compact Riemannian manifolds with positive Ricci curvature from which a certain part removed, admits a metric with G_2 holonomy? In this way, hypersurfaces obtained as G_2 orbits suggest us very important and interesting problems.
我证明了具有六个主曲率且重数为二的等参超曲面的齐性,这是我多年来一直在解决的问题。对所得到的齐次超曲面进行了研究,得到了如下结果:在重数为1的情况下,已知6个主曲率的超曲面是3个主曲率的超曲面上的纤维化,其中纤维不全是测地球面。在多重数为2的情况下,纤维尺寸为6,而在多重数为1的情况下,纤维尺寸为3。纤维化结构的发现是G.石川和M.此外,利用等参超曲面族充满周围空间的事实,我们得到了13维球面与7维球面之间的一个有趣的关系。进一步,利用这些超曲面作为例外群G_2的轨道给出,我们可以证明在S^7-CP^2上存在一个度量,其完整群是G_2。由此,将考虑卡拉比猜想的一个真实的开放版本,即,当一个具有正Ricci曲率的紧致黎曼流形去掉某一部分后,允许一个具有G_2完整性的度量?这样,作为G_2轨道的超曲面就给我们提供了非常重要和有趣的问题。

项目成果

期刊论文数量(105)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G.Ishikawa: "Submanifolds with degenerate Gauss mappings in spheres"Adv.Study in Pure Math.. I 37. 115-149 (2002)
G.Ishikawa:“球体中具有简并高斯映射的子流形”Adv.Study in Pure Math.. I 37. 115-149 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Miyaoka: "Isoparametric geometry and related fields"Adv.Studies in Pure Math.. (To appear). (2004)
R.Miyaoka:“等参几何及相关领域”Adv.Studies in Pure Math..(待出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Honda: "On complex spheres."Mem.Fac.Sci.Eng.Shimane. 36. 49-56 (2003)
K.Honda:“关于复杂的球体。”Mem.Fac.Sci.Eng.Shimane。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Makoto Kimura: "Space of geodesics in hyperbolic spaces and Lorentz numbers"Memoirs of The Faculty of Science and Engineering SHIMANE UNIVERSITY. 36. 61-67 (2003)
木村诚:“双曲空间中的测地线空间和洛伦兹数”岛根大学理工学院回忆录。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroshi Tamaru: "Cohomogeneity one actions on symmetric spaces with a totally geodesic singular orbit"数理研考究緑. 1292. 106-114 (2002)
Hiroshi Tamaru:“同齐性对具有完全测地奇异轨道的对称空间的作用”数学研究格林。1292。106-114(2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAOKA Reiko其他文献

MIYAOKA Reiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAOKA Reiko', 18)}}的其他基金

Value distribution theory of bounded domains
有界域的值分布理论
  • 批准号:
    23654021
  • 财政年份:
    2011
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Fusion of geometry and the theory of integrable systems
几何学与可积系统理论的融合
  • 批准号:
    19204006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development and relations between various geometries and integrable systems
各种几何形状和可积系统之间的发展和关系
  • 批准号:
    16204007
  • 财政年份:
    2004
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Differential systems and submanifolds theory
微分系统和子流形理论
  • 批准号:
    12640087
  • 财政年份:
    2000
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了