Differential systems and submanifolds theory

微分系统和子流形理论

基本信息

  • 批准号:
    12640087
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

We gave a new simple proof of the homogeneity of isoparametric hypersurfaces with six principal curvatures with single multiplicity. Concerning this, we investigate submanifolds in the spheres with degenrate Gauss mapping, and constructed many examples satisfying the equality in the Ferus inequality. All focal submanifolds of isoparametric hypersurfaces and all isoparametric hypersurfaces with degenerate Gauss mapping are austere submanifolds. It is known that the canonical embedding of the normal bundle of a (cone of) austere submanifold gives a special Lagrangian submanifold. We have shown that a proper complete austere submanifolds in R^n have the same homotopy type as a CW complex of dimension not larger than half dimension of the submanifold. This is interesting from the view point of volume minimizing normal bundles. As an inverse problem of splitting Gauss maps of surfaces of constant mean curvature in S^3, we get necessary and sufficient conditions to get surfaces of constant mean curvature from a pair of harmonic maps intoS^2.Kaneyuki studied orbit of generalized conformal transformation groups. Uchiyama investigated singularities of a non-linear ordinary differential eqquations. Yokoyama completed the theory of extended DS diagram. Tamaru classified isotropy orbits of certain symmetric spaces of non-compact type. Aiyama gave many kind of reperesentation formulas for surfaces, especially Langarnian surfaces in C^2.Ishikawa gave a topological classification of developable surfaces of space curves and studied singularities of contact manifolds. Udagawa described harmonic maps from tori into Grassmannian manifolds by using elliptic functions. He also studied circles in Hermitian symmetric spaces. Umehara studied singularities of curves, ends of minimal surfaces and concerning with Gauss map of these, studied an intrinsic properties of surface with constant curvature 1.Kimura constructied many homogeneous examples of circle and sphere bundles over submanifolds.
给出了单重六主曲率等参超曲面齐性的一个新的简单证明。对此,我们研究了球面中退化高斯映射的子流形,并构造了许多满足Ferus不等式中等式的例子。所有等参超曲面的焦点子流形和所有退化高斯映射的等参超曲面都是严格子流形。已知一个严格子流形(锥)的法丛的正则嵌入给出一个特殊的拉格朗日子流形。我们证明了R ^n中的真完备严格子流形与维数不大于其半维的CW复形具有相同的同伦类型。从体积最小化法丛的观点来看,这是有趣的。作为S^3中常平均曲率曲面的Gauss映射分裂的反问题,我们得到了从一对调和映射到S^2中得到常平均曲率曲面的充要条件. Kaneyuki研究了广义共形变换群的轨道.内山研究了一类非线性常微分方程的奇性。Yokoyama完成了扩展DS图的理论。Tamaru对某些非紧型对称空间的各向同性轨道进行了分类。Aiyama给出了许多曲面的表示公式,特别是C^2中的Langarnian曲面。Ishikawa给出了空间曲线可展曲面的拓扑分类,并研究了切触流形的奇异性。Udagawa利用椭圆函数描述了从环面到Grassmannian流形的调和映射。他还研究了圆埃尔米特对称空间。Umehara研究了曲线的奇异性、极小曲面的端点,并结合它们的Gauss映射,研究了常曲率曲面的一个内在性质1. Kimura构造了子流形上圆丛和球丛的许多齐次例子.

项目成果

期刊论文数量(79)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Umehara: "Metrics of constant curvature 1 with three conical singularities on the 2-sphere"Illinois Journal of Mathematics. 44 No.1. 72-94 (2000)
M.Umehara:“2 球面上具有三个圆锥奇点的常曲率 1 的度量”《伊利诺斯数学杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
石川剛郎: "代数曲線と特異点、特異点の数理、第4巻"共立出版. (2001)
Takeo Ishikawa:“代数曲线和奇点,奇点数学,第 4 卷”Kyoritsu Shuppan (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R. Miyaoka: "A simple proof of the homogeneity of isoparametric hypersurfaces with (g, m) = (6, 1)"Geometry and Topology of Submanifolds X. 178-199 (2000)
R. Miyaoka:“等参超曲面同质性的简单证明 (g, m) = (6, 1)”Geometry and Topology of Submanifolds X. 178-199 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
宮岡 礼子: "等径超曲面今昔-Elie Cartanと21世紀"数理解析研究所講究録. 1206. 32-44 (2001)
Reiko Miyaoka:“等径超曲面的过去和现在 - Elie Cartan 和 21 世纪”数学分析研究所 Kokyuroku。1206. 32-44 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Goo Ishikawa: "Topological classification of the tangent developables of a nace curres"Jour.of London Math.Soc.. 62. 583-598 (2000)
Goo Ishikawa:“nace curres 的切线可展性的拓扑分类”Jour.of London Math.Soc.. 62. 583-598 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAOKA Reiko其他文献

MIYAOKA Reiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAOKA Reiko', 18)}}的其他基金

Value distribution theory of bounded domains
有界域的值分布理论
  • 批准号:
    23654021
  • 财政年份:
    2011
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Fusion of geometry and the theory of integrable systems
几何学与可积系统理论的融合
  • 批准号:
    19204006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development and relations between various geometries and integrable systems
各种几何形状和可积系统之间的发展和关系
  • 批准号:
    16204007
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Differential equations and theory of submanifolds
微分方程和子流形理论
  • 批准号:
    14540090
  • 财政年份:
    2002
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
  • 批准号:
    2302624
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
COMPLEX LAGRANGIAN SUBMANIFOLDS IN HOLOMORPHIC SYMPLECTIC VARIETIES AND DIFFERENTIAL GRADED ALGEBRAS
全纯辛簇和微分梯度代数中的复拉格朗日子流形
  • 批准号:
    2901171
  • 财政年份:
    2018
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
On the Calabi-Yau manifolds and the special Lagrangian submanifolds from the view point of differential geometry
从微分几何的角度论Calabi-Yau流形和特殊拉格朗日子流形
  • 批准号:
    16K17598
  • 财政年份:
    2016
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Floer cohomology of Lagrangian submanifolds with non-commutative group actions
具有非交换群作用的拉格朗日子流形的Floer上同调
  • 批准号:
    16K05120
  • 财政年份:
    2016
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities of Special Lagrangian Submanifolds
特殊拉格朗日子流形的奇点
  • 批准号:
    16K17587
  • 财政年份:
    2016
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Quantum topology of lagrangian submanifolds
拉格朗日子流形的量子拓扑
  • 批准号:
    92913-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds
辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形
  • 批准号:
    1406322
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Research on special Lagrangian submanifolds and their singularities
特殊拉格朗日子流形及其奇点研究
  • 批准号:
    26400073
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum topology of lagrangian submanifolds
拉格朗日子流形的量子拓扑
  • 批准号:
    92913-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Symplectic Cohomology, log Calabi-Yau Varieties, and equivariant Lagrangian Submanifolds
辛上同调、对数 Calabi-Yau 簇和等变拉格朗日子流形
  • 批准号:
    1522670
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了