Differential systems and submanifolds theory
微分系统和子流形理论
基本信息
- 批准号:12640087
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We gave a new simple proof of the homogeneity of isoparametric hypersurfaces with six principal curvatures with single multiplicity. Concerning this, we investigate submanifolds in the spheres with degenrate Gauss mapping, and constructed many examples satisfying the equality in the Ferus inequality. All focal submanifolds of isoparametric hypersurfaces and all isoparametric hypersurfaces with degenerate Gauss mapping are austere submanifolds. It is known that the canonical embedding of the normal bundle of a (cone of) austere submanifold gives a special Lagrangian submanifold. We have shown that a proper complete austere submanifolds in R^n have the same homotopy type as a CW complex of dimension not larger than half dimension of the submanifold. This is interesting from the view point of volume minimizing normal bundles. As an inverse problem of splitting Gauss maps of surfaces of constant mean curvature in S^3, we get necessary and sufficient conditions to get surfaces of constant mean curvature from a pair of harmonic maps intoS^2.Kaneyuki studied orbit of generalized conformal transformation groups. Uchiyama investigated singularities of a non-linear ordinary differential eqquations. Yokoyama completed the theory of extended DS diagram. Tamaru classified isotropy orbits of certain symmetric spaces of non-compact type. Aiyama gave many kind of reperesentation formulas for surfaces, especially Langarnian surfaces in C^2.Ishikawa gave a topological classification of developable surfaces of space curves and studied singularities of contact manifolds. Udagawa described harmonic maps from tori into Grassmannian manifolds by using elliptic functions. He also studied circles in Hermitian symmetric spaces. Umehara studied singularities of curves, ends of minimal surfaces and concerning with Gauss map of these, studied an intrinsic properties of surface with constant curvature 1.Kimura constructied many homogeneous examples of circle and sphere bundles over submanifolds.
我们给出了一个新的简单证明,证明具有六个主曲线的等距性超曲面的同质性具有单个多样性。关于这一点,我们研究了带有脱胶高斯映射球体中的子延伸,并构建了许多满足Ferus不平等平等的例子。等横侧曲面的所有局灶性亚频量和所有具有简化高斯映射的等型超曲面的均为submanifolds。众所周知,Austere Submanifold的(锥体锥)的正常束的规范嵌入给出了特殊的Lagrangian Submanifold。我们已经表明,R^n中的正确完整的朴素submanifolds具有与尺寸不大的CW复合物相同的同型类型。从最小化正常束的体积的角度来看,这很有趣。作为在s^3中分裂恒定平均曲率表面的高斯图的一个反问题,我们得到了必要和足够的条件,可以从一对谐波映射的恒定平均曲率表面获得一对谐波图的恒定表面^2.Kaneyuki研究了广义共形转换组的轨道。 Uchiyama调查了非线性普通差分式的奇异性。横山完成了扩展DS图的理论。 tamaru分类的非紧缩类型对称空间的各向同性轨道。 Aiyama为表面提供了许多类型的再生公式,尤其是C^的Langarnian表面。乌达瓦(Udagawa)通过使用椭圆函数将谐波图描述为从托里(Tori)到格拉曼尼亚(Grassmannian)歧管。他还在隐性对称空间学习了圆圈。 Umehara研究了曲线的奇异性,最小表面的末端以及与这些曲线的高图相关的,研究了表面的固有特性,其稳定曲率的表面1.Kimura 1. Kimura构建了许多圆形和球体捆绑的均匀实例。
项目成果
期刊论文数量(79)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Goo Ishikawa: "Topological classification of the tangent developables of a nace curres"Jour.of London Math.Soc.. 62. 583-598 (2000)
Goo Ishikawa:“nace curres 的切线可展性的拓扑分类”Jour.of London Math.Soc.. 62. 583-598 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
石川剛郎: "代数曲線と特異点、特異点の数理、第4巻"共立出版. (2001)
Takeo Ishikawa:“代数曲线和奇点,奇点数学,第 4 卷”Kyoritsu Shuppan (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Umehara: "Metrics of constant curvature 1 with three conical singularities on the 2-sphere"Illinois Journal of Mathematics. 44 No.1. 72-94 (2000)
M.Umehara:“2 球面上具有三个圆锥奇点的常曲率 1 的度量”《伊利诺斯数学杂志》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Umehare: "Metrics of constand curvature 1 with three conical singularities on the 2-sphere"Fllinois J.of Math.. 44. 72-94 (2000)
M.Umehare:“2 球面上具有三个圆锥奇点的常曲率 1 的度量”Fllinois J.of Math.. 44. 72-94 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R. Miyaoka: "A simple proof of the homogeneity of isoparametric hypersurfaces with (g, m) = (6, 1)"Geometry and Topology of Submanifolds X. 178-199 (2000)
R. Miyaoka:“等参超曲面同质性的简单证明 (g, m) = (6, 1)”Geometry and Topology of Submanifolds X. 178-199 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAOKA Reiko其他文献
MIYAOKA Reiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAOKA Reiko', 18)}}的其他基金
Value distribution theory of bounded domains
有界域的值分布理论
- 批准号:
23654021 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Fusion of geometry and the theory of integrable systems
几何学与可积系统理论的融合
- 批准号:
19204006 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development and relations between various geometries and integrable systems
各种几何形状和可积系统之间的发展和关系
- 批准号:
16204007 - 财政年份:2004
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Differential equations and theory of submanifolds
微分方程和子流形理论
- 批准号:
14540090 - 财政年份:2002
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quantized Lagrangian submanifolds of moduli spaces and representation theory
模空间的量化拉格朗日子流形和表示理论
- 批准号:
2302624 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
COMPLEX LAGRANGIAN SUBMANIFOLDS IN HOLOMORPHIC SYMPLECTIC VARIETIES AND DIFFERENTIAL GRADED ALGEBRAS
全纯辛簇和微分梯度代数中的复拉格朗日子流形
- 批准号:
2901171 - 财政年份:2018
- 资助金额:
$ 1.86万 - 项目类别:
Studentship
On the Calabi-Yau manifolds and the special Lagrangian submanifolds from the view point of differential geometry
从微分几何的角度论Calabi-Yau流形和特殊拉格朗日子流形
- 批准号:
16K17598 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Floer cohomology of Lagrangian submanifolds with non-commutative group actions
具有非交换群作用的拉格朗日子流形的Floer上同调
- 批准号:
16K05120 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities of Special Lagrangian Submanifolds
特殊拉格朗日子流形的奇点
- 批准号:
16K17587 - 财政年份:2016
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Young Scientists (B)