Mathematical Model Analysis for the Stability Change of Ecosystem by Elimination of Interspecific Relationship

消除种间关系引起生态系统稳定性变化的数学模型分析

基本信息

  • 批准号:
    14540120
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1. As for Lotka-Volterra competing two species system with temporally intermittent competitive relationship, the temporally intermittent competition could realize the coexistence or emphasize the competition as a result. We introduce in addition the spatial distribution of those two species, making a mathematical model with reaction-diffusion system, and discuss the expansion or the shrinking of spatial distribution as a travelling wave problem. Until now we find that the temporally intermittent competition could cause the coexistence of two species at the same site, with their spatially overlapping distributions. Mathematically the conditions for such co-location coexistence would be closely related to the condition for coexistence in case of population dynamics without taking account of spatial distribution. Moreover, in case of spatial co-location coexistence, each spatial distribution invades into the habitat of another species. Numerical calculations indicate that the front of suc … More h spatial invasion can be treated as a stationary travelling wave with a constant speed2. As for Lotka-Volterra predator-prey system, we investigate the possibility of coexistence of preys with competition which mediates the apparent competition by a common predator. We can show that, even when a prey tends to go extinct due to predation by a predator that feeds another preys, the prey could survive if it has an appropriate competitive relationship with another prey(s), with or without predators extinction. This implies that, with an elimination of competitive relationship between preys within a food web, some preys could go extinct due to such indirect effect. Consequently it is indicated that the competitive relationship could promote the coexistence between those competing species. Therefore, the competitive relationship within a stable ecosystem may stabilize the system. On the other hand, the invasion of new species may considerably destabilize the system, depending on the possible predation for the invading species Less
1.对于具有时间间歇竞争关系的Lotka-Volterra竞争两种群系统,时间间歇竞争可以实现共存或强化竞争.本文还介绍了这两种物种的空间分布,建立了一个反应扩散系统的数学模型,并将空间分布的扩张或收缩作为行波问题进行了讨论。到目前为止,我们发现时间上间歇性的竞争可能会导致两个物种在同一地点共存,并且在空间上分布重叠。在数学上,这种共址共存的条件将与不考虑空间分布的种群动态情况下的共存条件密切相关。此外,在空间共位共存的情况下,每个空间分布侵入另一个物种的栖息地。数值计算表明, ...更多信息 h空间侵入可以被视为具有恒定速度的静止行波2。对于Lotka-Volterra捕食-食饵系统,我们研究了食饵与竞争共存的可能性,其中竞争是由一个共同的捕食者介导的表观竞争.我们可以证明,即使当一个猎物由于捕食者的捕食而趋于灭绝时,如果它与另一个猎物有适当的竞争关系,无论捕食者是否灭绝,猎物都可以生存。这意味着,随着食物网中猎物之间竞争关系的消除,一些猎物可能会因这种间接影响而灭绝。这表明,竞争关系可以促进这些竞争物种之间的共存。因此,在一个稳定的生态系统中,竞争关系可以使系统稳定。另一方面,新物种的入侵可能会大大破坏系统的稳定性,这取决于入侵物种可能的捕食行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SENO Hiromi其他文献

SENO Hiromi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SENO Hiromi', 18)}}的其他基金

Mathematical consideration of new modeling for biological population dynamics
生物种群动态新模型的数学考虑
  • 批准号:
    24540129
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On Mathematical Structure of Time-Discrete Model for Epidemic Population Dynamics
流行病人口动态时间离散模型的数学结构探讨
  • 批准号:
    21540130
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the mathematically rational structure of the time-discrete model for biological population dynamics
论生物种群动态时间离散模型的数学合理结构
  • 批准号:
    19540132
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Modelling Analysis for Population Dynamics with Temporally Intermittent Specific Interaction
具有时间间歇特定相互作用的种群动态数学模型分析
  • 批准号:
    12640126
  • 财政年份:
    2000
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Cyanobacterial extracellular metabolomes: overlooked drivers of ecosystem ecology and evolution
蓝藻细胞外代谢组:被忽视的生态系统生态和进化驱动因素
  • 批准号:
    23K19391
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The evolutionary ecology of plasmid-mediated horizontal gene transfer in the hospital sink drain ecosystem
医院水槽排水生态系统中质粒介导的水平基因转移的进化生态学
  • 批准号:
    MR/W02666X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Fellowship
Collaborative Research: Illuminating Cave Benthos in Subterranean Estuaries- Biodiversity, Ecology, and Role in Coastal Ecosystem Functioning
合作研究:阐明地下河口的洞穴底栖动物——生物多样性、生态学以及在沿海生态系统功能中的作用
  • 批准号:
    2136377
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Comparative Ecosystem Ecology: Acclimation of ecosystem function to warmer temperatures and altered moisture
比较生态系统生态学:生态系统功能对气温升高和湿度变化的适应
  • 批准号:
    RGPIN-2019-05195
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Discovery Grants Program - Individual
Developing remote monitoring system of aquatic animals' behavior and ecology to reform ecosystem conservation
开发水生动物行为和生态远程监测系统改革生态系统保护
  • 批准号:
    22K18432
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Collaborative Research: Illuminating Cave Benthos in Subterranean Estuaries- Biodiversity, Ecology, and Role in Coastal Ecosystem Functioning
合作研究:阐明地下河口的洞穴底栖动物——生物多样性、生态学以及在沿海生态系统功能中的作用
  • 批准号:
    2136322
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Greening cities: biodiversity and ecosystem services associated with street trees, from ecology to planning
绿化城市:与行道树相关的生物多样性和生态系统服务,从生态到规划
  • 批准号:
    2642844
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Collaborative Research: BEE: Bridging the ecology and evolution of East African Acacias across time and space: genomics, ecosystem, and diversification
合作研究:BEE:跨越时间和空间连接东非金合欢的生态和进化:基因组学、生态系统和多样化
  • 批准号:
    2106070
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: BEE: Bridging the ecology and evolution of East African Acacias across time and space: genomics, ecosystem, and diversification.
合作研究:BEE:跨越时间和空间连接东非金合欢的生态和进化:基因组学、生态系统和多样化。
  • 批准号:
    2105917
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Comparative Ecosystem Ecology: Acclimation of ecosystem function to warmer temperatures and altered moisture
比较生态系统生态学:生态系统功能对气温升高和湿度变化的适应
  • 批准号:
    RGPIN-2019-05195
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了