Mathematical Modelling Analysis for Population Dynamics with Temporally Intermittent Specific Interaction
具有时间间歇特定相互作用的种群动态数学模型分析
基本信息
- 批准号:12640126
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
・ We have studied the Lotka-Volterra two species system with competitive relationship which is disappeared periodically in time. In the period without competitive relationship, each of two species populations grows independently of each other. Our results show that such temporally intermittency of competitive relationship can cause the change of which species goes extince or the coexistence of two species. Results about the relation between such specific phases and the parameters in model have been presented in part at some domestic or international scientific meetings, and are planned to be published in paper in 2002.・ We have studied some mathematical methods to analyze the Lotka-Volterra prey-predator system with temporally intermittent disturbance. Method developed by P.H. Leslie (1958) in some intuitive way is extended and applied for Lotka-Volterra prey-predator ODE system, and we can obatin a time-discrete dynamical system derived from it, which conserves the characteristics of original ODE dynamical system. We applied our extended method for the other fundamental mathematical models in Mathematical Biology, and show that those derived time-discrete systems can conserve well the behavior of solution for the original system. Some results have been already presented in some domestic and international scientific meetings.・ We have studied the Lotka-Volterra prey-predator system with harvestion term which is temporally intermittent, that is, which is disappeared periodically in time. In the system with temporally continuous harvestion, the extinction of prey or predator occurs in a finite time, depending on the initial condition. In contrast, as for the system with temporally intermittent harvestion, the conclusion of population dynamics can change : for instance, the extinct species is changed. Some results will be presented in some domestic and international scientific meetings.
·我们研究了Lotka-Volterra两种竞争关系随时间周期性消失的系统。在没有竞争关系的时期,两种种群相互独立生长。我们的研究结果表明,这种竞争关系的暂时间歇会导致物种灭绝或两种共存的变化。这些具体阶段与模型参数之间关系的研究结果已部分在国内或国际科学会议上发表,并计划于2002年发表论文。我们研究了一些数学方法来分析具有时间间歇扰动的Lotka-Volterra捕食-捕食系统。将P.H. Leslie(1958)的方法以一种直观的方式推广并应用于Lotka-Volterra捕食-捕食ODE系统,可以得到一个时间离散的动力系统,该系统保留了原始ODE动力系统的特征。我们将该方法应用于数学生物学中其他基本数学模型,并证明了这些导出的时间离散系统能很好地保留原系统解的行为。一些研究结果已经在一些国内和国际科学会议上发表。·我们研究了Lotka-Volterra猎物-捕食者系统,该系统的收获期是暂时间歇的,即在时间上周期性消失。在具有时间连续收获的系统中,猎物或捕食者的灭绝发生在有限时间内,取决于初始条件。相比之下,对于具有暂时间歇收获的系统,种群动态的结论可能发生变化,例如,灭绝物种发生变化。部分成果将在国内外科学会议上发表。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
瀬野裕美: "個体群動態の数理モデリング序論"(株)科学技術出版(仮題)(出版予定). 1-300 (2002)
濑野弘美:《人口动态数学建模导论》,科学技术出版有限公司(暂定名)(待出版)1-300(2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SENO Hiromi其他文献
SENO Hiromi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SENO Hiromi', 18)}}的其他基金
Mathematical consideration of new modeling for biological population dynamics
生物种群动态新模型的数学考虑
- 批准号:
24540129 - 财政年份:2012
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On Mathematical Structure of Time-Discrete Model for Epidemic Population Dynamics
流行病人口动态时间离散模型的数学结构探讨
- 批准号:
21540130 - 财政年份:2009
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the mathematically rational structure of the time-discrete model for biological population dynamics
论生物种群动态时间离散模型的数学合理结构
- 批准号:
19540132 - 财政年份:2007
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model Analysis for the Stability Change of Ecosystem by Elimination of Interspecific Relationship
消除种间关系引起生态系统稳定性变化的数学模型分析
- 批准号:
14540120 - 财政年份:2002
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
- 批准号:
23K11128 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
- 批准号:
23H01420 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
- 批准号:
567961-2022 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Postgraduate Scholarships - Doctoral
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
- 批准号:
EP/W007355/1 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Research Grant
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
- 批准号:
577586-2022 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
- 批准号:
22K10604 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
- 批准号:
22K20514 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Research Activity Start-up