Lie algebra & group methods to non-linear stochastic dynamical systems and its applications
李代数
基本信息
- 批准号:14540133
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present study focuses on Lie algebra & group methods to formulate numerical schemes of stochastic differential equations and the related topics on non-linear stochastic dynamical systems governed by such stochastic equations.The head investigator, Misawa, deeply investigates "symplectic integrators" for stochastic Hamiltonian dynamical systems by using "composition methods"which are formulated on the basis of Lie algebra & group theory. The new schemes are advantageous to preserve symplectic structure of the stochastic Hamiltonian systems numerically and are useful for producing the stable numerical solutions. To examine the superiority, Misawa also gives an illustrative example on the proposed schemes for such stochastic systems.In order to investigate the utility of stochastic numerical analysis, the investigators study on non-linear stochastic dynamical systems in various research fields. Misawa studies numerical simulations of stochastic macroeconomic models, Markov chain algor … More ithm in smoothing time series data and stochastic and statistical models in financial engineering. Particularly, he mainly works with investigating some regression models concerning with electricity markets. The investigator, Miyahara, studies the option pricing problems in the incomplete asset market, which is one of the important problems in the field of mathematical finance. He also constructs the [Geometric Levy process & MEMM] pricing model, in which the geometric Levy processes are adopted as the underlying asset price processes and the MEMM(=minimal entropy martingale measure), and investigates the properties of this model. The investigator, Shimizu, works with the following topics ; coalescent process with fluctuating population size and its effective population size, Poisson random measures and infinitely divisible distributions in population genetics, and the Handa model incorporating symmetric selections. The investigator, Notohara studies the genealogy of sampled genes from geographically structured population which is described by a Markov process called Structured Coalescent Model. He investigates effects of the geographical structure on the distribution of the coalescence time, which is the time to the most recent common ancestor of samples, and the distribution of the number of segregating sites detected in sampled DNA sequences. The investigator, Hashimoto, studies non-isotropic Gevrey hypoellipticity for Grushin operators and the analyticity of the solutions of the non-linear elliptic partial differential equations. Through these related topics, we find out that stochastic dynamical theory and stochastic numerical methods are useful for the analysis of the several stochastic models. Less
本文主要研究用李代数和群方法建立随机微分方程组的数值格式以及由这些随机方程所支配的非线性随机动力系统的相关问题。首席研究员三泽利用基于李代数和群论的“合成方法”深入研究了随机哈密顿动力系统的“辛积分器”。新格式有利于在数值上保持随机哈密顿系统的辛结构,并有助于产生稳定的数值解。为了检验这种方法的优越性,三泽还给出了一个例子来说明所提出的方法。为了考察随机数值分析的实用性,研究人员对不同研究领域中的非线性随机动力系统进行了研究。三泽研究随机宏观经济模型的数值模拟,马尔科夫链算法…更擅长于时间序列数据的平滑以及金融工程中的随机和统计模型。特别是,他主要研究与电力市场有关的一些回归模型。研究人员宫原研究了不完全资产市场中的期权定价问题,这是数学金融领域的重要问题之一。构造了以几何Levy过程为标的资产价格过程,以MEMM(=最小熵值)为标的的定价模型,并研究了该模型的性质。研究人员清水研究了以下主题:种群规模波动及其有效种群规模的合并过程,种群遗传学中的泊松随机度量和无限可分分布,以及包含对称选择的汉达模型。研究人员Notohara研究了从地理结构的种群中抽样的基因的谱系,这是由一个称为结构化合并模型的马尔可夫过程描述的。他研究了地理结构对合并时间分布的影响,合并时间是样本最近共同祖先的时间,以及在采样DNA序列中检测到的分离位点数量的分布。研究人员Hashimoto研究了Grushin算子的非各向同性Gevrey亚椭圆性和非线性椭圆型偏微分方程解的解析性。通过这些相关的主题,我们发现随机动力学理论和随机数值方法对于分析几个随机模型是有用的。较少
项目成果
期刊论文数量(86)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect on Price Cap of Electric Power Market in California State
对加州电力市场价格上限的影响
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Hajime Miyauchi;Genta Tatsuguchi;Tetsuya Misawa
- 通讯作者:Tetsuya Misawa
T.Asada, T.Inaba, T.Misawa: "An Interregional Dynamic Model : the Case of Fixed Exchange Rates"Studies in Regional Science (2001). 31・2. 29-42 (2002)
T.Asada、T.Inaba、T.Misawa:“区域间动态模型:固定汇率的情况”《区域科学研究》(2001 年)31・2(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MISAWA Tetsuya其他文献
MISAWA Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MISAWA Tetsuya', 18)}}的其他基金
Dynamical Risk Sensitive Value Measure and its Application to Valuation of Project
动态风险敏感价值测度及其在项目评估中的应用
- 批准号:
18K03421 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk analysis for the evaluation of investment in the framework of stochastic dynamical theory
随机动力学理论框架下投资评估的风险分析
- 批准号:
24540136 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk analysis based on stochastic dynamical systems theory
基于随机动力系统理论的风险分析
- 批准号:
21540140 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry on stochastic discrete dynamical systems and the related topics
随机离散动力系统的对称性及相关主题
- 批准号:
18540134 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conserved quantities and symmetries in non-linear stochastic dynamical systems and its applications
非线性随机动力系统中的守恒量和对称性及其应用
- 批准号:
11640132 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic numerical schemes to stochastic dynamical systems with conserved quantities
具有守恒量的随机动力系统的随机数值格式
- 批准号:
09640285 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry in non-linear stochastic dynamical systems and its applications
非线性随机动力系统的对称性及其应用
- 批准号:
08640300 - 财政年份:1995
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
SKELETAL MUSCLE: ADVANCED BODY COMPOSITION METHODS AND MODELS
骨骼肌:先进的身体构成方法和模型
- 批准号:
7205873 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6517186 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6576911 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6796491 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6700191 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6796483 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6800877 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6574843 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
BODY COMPOSITION: METHODS, MODEL & CLINICAL APPLICATION
身体成分:方法、模型
- 批准号:
6796205 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:














{{item.name}}会员




