Lie algebra & group methods to non-linear stochastic dynamical systems and its applications
李代数
基本信息
- 批准号:14540133
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present study focuses on Lie algebra & group methods to formulate numerical schemes of stochastic differential equations and the related topics on non-linear stochastic dynamical systems governed by such stochastic equations.The head investigator, Misawa, deeply investigates "symplectic integrators" for stochastic Hamiltonian dynamical systems by using "composition methods"which are formulated on the basis of Lie algebra & group theory. The new schemes are advantageous to preserve symplectic structure of the stochastic Hamiltonian systems numerically and are useful for producing the stable numerical solutions. To examine the superiority, Misawa also gives an illustrative example on the proposed schemes for such stochastic systems.In order to investigate the utility of stochastic numerical analysis, the investigators study on non-linear stochastic dynamical systems in various research fields. Misawa studies numerical simulations of stochastic macroeconomic models, Markov chain algor … More ithm in smoothing time series data and stochastic and statistical models in financial engineering. Particularly, he mainly works with investigating some regression models concerning with electricity markets. The investigator, Miyahara, studies the option pricing problems in the incomplete asset market, which is one of the important problems in the field of mathematical finance. He also constructs the [Geometric Levy process & MEMM] pricing model, in which the geometric Levy processes are adopted as the underlying asset price processes and the MEMM(=minimal entropy martingale measure), and investigates the properties of this model. The investigator, Shimizu, works with the following topics ; coalescent process with fluctuating population size and its effective population size, Poisson random measures and infinitely divisible distributions in population genetics, and the Handa model incorporating symmetric selections. The investigator, Notohara studies the genealogy of sampled genes from geographically structured population which is described by a Markov process called Structured Coalescent Model. He investigates effects of the geographical structure on the distribution of the coalescence time, which is the time to the most recent common ancestor of samples, and the distribution of the number of segregating sites detected in sampled DNA sequences. The investigator, Hashimoto, studies non-isotropic Gevrey hypoellipticity for Grushin operators and the analyticity of the solutions of the non-linear elliptic partial differential equations. Through these related topics, we find out that stochastic dynamical theory and stochastic numerical methods are useful for the analysis of the several stochastic models. Less
本研究的重点是制定由此类随机方程支配的非线性随机动态系统的随机微分方程的数值方案以及相关主题的数值方案。主管Misawa,Misawa,Misawa,Misawa,Misawa,Misawa,Misawa,somplatic Integators''somplictic集成剂对随机的汉密尔顿动态系统的使用,通过使用“组合方法”和“组合”方法,并依次使用“组成”和“依次”。新方案有利于保留随机哈密顿系统的相互毒性结构,可用于生产稳定的数值溶液。为了检查超自然现象,Misawa还为此类随机系统提出的方案提供了一个说明性的例子。 Misawa研究了随机宏观经济模型的数值模拟,Markov Chain Algor…在平滑时间序列数据中更多的ITHM以及金融工程中的随机和统计模型。特别是,他主要与调查有关电力市场有关的一些回归模型的工作。研究人员宫纳拉(Miyahara)研究了不完整的资产市场中的期权定价问题,这是数学金融领域的重要问题之一。他还构建了[几何征费过程和MEMM]定价模型,其中将几何征税过程作为基础资产价格过程和MEMM(=最小熵Martingale测量),并研究了该模型的性质。调查员Shimizu与以下主题合作;与人口大小的波动及其有效的人口规模,人口遗传学中的无限分布分布以及编码对称选择的Handa模型相结合的过程。研究者Notohara研究了来自地理结构种群的采样基因的家谱,该基因由马尔可夫过程称为结构化合并模型。他研究了地理结构对合并时间分布的影响,这是对样本的最新共同祖先的时间,以及在采样的DNA序列中检测到的分离位点数量的分布。研究者Hashimoto,研究了非各向异性Gevrey低细胞性算子,以及非线性椭圆形偏微分方程的溶液的分析性。通过这些相关主题,我们发现随机动态理论和随机数值方法可用于分析几种随机模型。较少的
项目成果
期刊论文数量(86)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Asada, T.Inaba, T.Misawa: "An Interregional Dynamic Model : the Case of Fixed Exchange Rates"Studies in Regional Science (2001). 31・2. 29-42 (2002)
T.Asada、T.Inaba、T.Misawa:“区域间动态模型:固定汇率的情况”《区域科学研究》(2001 年)31・2(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect on Price Cap of Electric Power Market in California State
对加州电力市场价格上限的影响
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Hajime Miyauchi;Genta Tatsuguchi;Tetsuya Misawa
- 通讯作者:Tetsuya Misawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MISAWA Tetsuya其他文献
MISAWA Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MISAWA Tetsuya', 18)}}的其他基金
Dynamical Risk Sensitive Value Measure and its Application to Valuation of Project
动态风险敏感价值测度及其在项目评估中的应用
- 批准号:
18K03421 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk analysis for the evaluation of investment in the framework of stochastic dynamical theory
随机动力学理论框架下投资评估的风险分析
- 批准号:
24540136 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Risk analysis based on stochastic dynamical systems theory
基于随机动力系统理论的风险分析
- 批准号:
21540140 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry on stochastic discrete dynamical systems and the related topics
随机离散动力系统的对称性及相关主题
- 批准号:
18540134 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conserved quantities and symmetries in non-linear stochastic dynamical systems and its applications
非线性随机动力系统中的守恒量和对称性及其应用
- 批准号:
11640132 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic numerical schemes to stochastic dynamical systems with conserved quantities
具有守恒量的随机动力系统的随机数值格式
- 批准号:
09640285 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry in non-linear stochastic dynamical systems and its applications
非线性随机动力系统的对称性及其应用
- 批准号:
08640300 - 财政年份:1995
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
大型离子探针同时测试磷灰石CO2含量和C同位素组成方法开发与参考物质研制
- 批准号:42303024
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Gut Microbial Factors in Farming Lifestyle and Allergic Sensitization
农业生活方式和过敏致敏中的肠道微生物因素
- 批准号:
10633368 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
- 批准号:
10777339 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Multiplexed in vivo assembly of long and complex DNA
长且复杂的 DNA 的多重体内组装
- 批准号:
10760876 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别: