THE RESARCH OF PERATORS ON FUNCTION SPACES BY THE METHOD TO HARMONIC ANALYSIS AND RELATED ANALYSIS

调和分析法对功能空间算子的研究及相关分析

基本信息

  • 批准号:
    14540150
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Our purpose of this research is to study the properties of operators on function spaces by the method of harmonic analysis and related analysis. Our investigators did the research at each special point. The content is as follows:Sato studied the generalization of the relation between some operators of Hankel transforms on the positive numbers and the operators of Jacobi orthogonal system on (0,\pi). Okayasu investigated the structure of isometries on a function space and the Korovkin type linear approximation of them by contractions. Besides, he investigated the maximum part of a tuple of operators on a Hilbert space for which an indicated operator inequality holds. Mori researched about a problem of constructions of algebraically nondegenerate meromorphic mappings f of complex spaces C^m into complex projective spaces P^n(C) that for any given hypersurface D in P^n(C), f has the prescribed deficient value for D. Mizuhra showed the weak factorization theorem of H^1-functions due to Morrey functions, blocks and the Riesz potential. Also applying this result, we observed the necessity for which the commutator between the Riesz potential and a locally integrable function to be bounded on Morrey Spaces. Nakada studied some geometric properties of the Julia set of rational functions on the Riemann sphere. In particular, it is concerned with the group of euclidean motions which keep invariant the Julia set. Kawamura discussed an generalization of the theory concerning the behavior of probability density functions associated with chaotic maps on a measure space. The spaces he considered were AL and AM spaces and he generalized a convergence theory of probability density functions. Sekigawa examined some examples of transformations with torsion acting on the 3-dimensional Euclidean space by using Clifford matrix representations of M\" obius transformation.
本文的研究目的是用调和分析和相关分析的方法研究函数空间上算子的性质。我们的调查人员在每个特殊的地点都做了调查。内容如下:Sato研究了正数上的一些Hankel变换算子与(0,\pi)上的Jacobi正交系统算子之间关系的推广。Okayasu研究了函数空间上的等距结构以及它们的Korovkin型线性逼近。此外,他还研究了希尔伯特空间上存在一个指示算子不等式的算子元组的极大部分。Mori研究了复空间C^m的代数非退化亚纯映射f到复射影空间P^n(C)的构造问题,即对于P^n(C)中任意给定的超曲面D, f对D具有规定的亏缺值。Mizuhra由于Morrey函数、块和Riesz势,给出了H^1函数的弱分解定理。同样应用这一结果,我们观察到Riesz势与局部可积函数之间的对易子在Morrey空间上有界的必要性。Nakada研究了黎曼球上有理函数Julia集的一些几何性质。特别地,它关注保持Julia集合不变的欧几里得运动群。Kawamura讨论了关于混沌映射在测量空间上的概率密度函数行为的理论的推广。他考虑的空间是AL和AM空间,并推广了概率密度函数的收敛理论。Sekigawa用M\ obius变换的Clifford矩阵表示检验了一些具有扭转作用于三维欧几里得空间的变换的例子。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Komori, T.Mizuhara: "Notes on Commutators and Morrey spaces"Hokkaido Math.J.. VOl.32. 345-353 (2003)
Y.Komori,T.Mizuhara:“关于换向器和莫雷空间的注释”Hokkaido Math.J.. VOl.32。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Sato: "Lorentz multipliers for Hankel transforms"Science mathematicae Japonicae. Vol.59,No.3(to appear).
E.Sato:“汉克尔变换的洛伦兹乘子”日本数学科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Okayasu, T.Hachiro: "Some theorems of Korovkin type"Studia Math.. 155(2). 131-143 (2003)
T.Okayasu、T.Hachiro:“Korovkin 型的一些定理”Studia Math.. 155(2)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Mori: "Meromorphic mappings and deficiencies"Advanced Studies in Pure Math., Complex Analysis is Several Variables.
S.Mori:“亚态映射和缺陷”纯数学高级研究,复分析是多个变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.komori: "Notes on commutators and Morrey spaces"Hokkaido Math.J.. 32. 345-353 (2003)
Y.komori:“关于交换子和莫雷空间的注释”Hokkaido Math.J.. 32. 345-353 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SATO Eiji其他文献

A STUDY ON STATIC MECHANICAL PROPERTIES OF VERTICAL SEISMIC ISOLATION SYSTEM WITH PARALLEL LINK MECHANISM
并联机构垂直隔震系统静态力学性能研究
地点別の地盤増幅特性を考慮した貯水槽被害の危険性評価
考虑每个位置的地面放大特性的水箱损坏风险评估
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TOMIZAWA Tetsuya;MATSUMOTO Itsuki;OGAWA Koya;YAMADA Manabu;SATO Eiji;FUKUI Hirohisa;亀山拓希,佐藤尚次,小野泰介,平野廣和
  • 通讯作者:
    亀山拓希,佐藤尚次,小野泰介,平野廣和

SATO Eiji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SATO Eiji', 18)}}的其他基金

Elucidation of the effects of vertical earthquake motion on structures, etc. and advancement of vertical seismic isolation mechanism to reduce the effects
阐明垂直地震运动对结构等的影响,并改进垂直隔震机制以减少影响
  • 批准号:
    18K04339
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for cancer drug candidate and its application under a new idea
新思路下寻找抗癌候选药物及其应用
  • 批准号:
    25670072
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The Reconstruction of mathematics education in Japanese elementary schools, 1910-1950
日本小学数学教育的重建,1910-1950
  • 批准号:
    22530833
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Hankel Transform, Langlands Functoriality and Functional Equation of Automorphic L-Functions
自同构 L 函数的 Hankel 变换、Langlands 函性和泛函方程
  • 批准号:
    1702380
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Pinwheel Diffraction and the Hankel Transform
风车衍射和汉克尔变换
  • 批准号:
    480005-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了