Research on Global Properties and Correlation of Solutions to Functioanl Equations and Difference Equations
函数方程和差分方程解的全局性质及相关性研究
基本信息
- 批准号:14540158
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.The existence conditions of bounded solutions of the linear differential equation with a periodic forcing function are obtained by using the difference equations. The itteration of the period solution map makes a sequence which is a solutions of a linear difference equation. The general term of this sequence is represented by the initial term, the mean of the periodic forcing function and the eigenvalues of the coefficient matrix. The boundedness and periodicity of solutions are determined completely by initial values ant the mean of the forcing functions. 2.Linear functional differential equations in a Banach space are transformed to opertor equations on the space of bounded continuous functions. The spectrum of the solutions are computed and the existence of solutions whose spectrum satisfies the period conditions are computed and the existence of solutions whose spectrum satisfies the period conditions are obtained. 3.The general variation of constants formula is completely obtain … More ed on the phase space for linear periodic functional differential equations. The formula is applied for the existence of periodic solutions. 4.Analytic solutions of difference equations are applied to the research in the population and environmental sciences. 5.The numerical simulation algorithm is developed based on the finite element method that reduces the radiation and scattering problem in an unbounded region into the one in a bounded region using aritificial boundary. 6.A fundamental solution method applied to reduced wave problems in the exterior domain of disc has been investigated. The case of equi-distant equally phased arrangement of source points and collocation points has been studied from the view points of both theoretical analysis and numerical experiment. 7.Pertabations of eigenvalues are studied for structural-acoustic system. Well-posedness of the Cauchy problem is studied in Gevrey class for some weakly hyperbolic equations of higher order. Fixed point theorems are applied to the stability theory of solutions of integral differential equations. Less
1.利用差分方程得到了具有周期强迫函数的线性微分方程有界解的存在条件。周期解映射的迭代产生一个序列,该序列是线性差分方程的解。该序列的通项由初始项、周期强迫函数的平均值和系数矩阵的特征值表示。解的有界性和周期性完全由初值和强迫函数的均值决定。2.将Banach空间中的线性泛函微分方程转化为有界连续函数空间上的算子方程。计算了解的谱,并证明了谱满足周期条件的解的存在性,得到了谱满足周期条件的解的存在性. 3.完整地得到了常数的一般变分公式 ...更多信息 艾德关于线性周期泛函微分方程的相空间。该公式被应用于周期解的存在性。4.差分方程的解析解在人口与环境科学研究中有着广泛的应用。5.基于有限元法,利用人工边界将无界区域内的辐射和散射问题转化为有界区域内的辐射和散射问题。6.研究了圆盘外区域约化波问题的基本解方法。从理论分析和数值试验两个方面研究了源点和配置点等距等相位布置的情况。7.研究了结构-声系统的特征值变换问题。在Gevrey类中研究了一类高阶弱双曲型方程Cauchy问题的适定性。不动点定理应用于积分微分方程解的稳定性理论。少
项目成果
期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Murakami, T.Naito, Nguyen V.M.: "Massera's theorem for almost periodic solutions of functional differential equations"J.Math.Soc.Japan. 56. 242-268 (2004)
S.Murakami、T.Naito、Nguyen V.M.:“函数微分方程的几乎周期解的 Massera 定理”J.Math.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ushijima, F.Chiba: "A fundamental solution method for the reduced wave problem in a domain exterior to a disc"J.Computational and Appl.Math.. 152. 545-557 (2003)
T.Ushijima、F.Chiba:“盘外部域中减少波问题的基本解决方法”J.Computational and Appl.Math.. 152. 545-557 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
千葉文浩, 牛島照夫: "円外帰着波動問題の基本解近似解法における誤差の指数的減少"2003年度応用数学合同研究集会報告集. 193-196 (2003)
Fumihiro Chiba、Teruo Ushijima:“外圈递归波问题基本解近似方法中误差的指数减少”2003年应用数学联合研究会议论文集193-196(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ushijima: "Equi-distant collocation method for periodic functions with kernel expression"Pro.Fifth China-Japan Joint Seminar on Numerical Math.. 220-226 (2002)
T.Ushijima:“带核表达式的周期函数的等距配置方法”Pro.第五届中日数值数学联合研讨会.220-226(2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hino, S.Murakami: "Total stability and the existence of almost periodic integrals for almost periodic general process"Vietnam J.Math.. 30. 425-435 (2002)
Y.Hino, S.Murakami:“几乎周期一般过程的完全稳定性和几乎周期积分的存在性”Vietnam J.Math.. 30. 425-435 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAITO Toshiki其他文献
NAITO Toshiki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAITO Toshiki', 18)}}的其他基金
Research on difference methods, positive property and related problems of functional equations
函数方程的差分法、正性及相关问题研究
- 批准号:
19540168 - 财政年份:2007
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments of functional differential equations combined with difference equations, and studies of related topics
与差分方程相结合的泛函微分方程的新进展及相关课题的研究
- 批准号:
16540141 - 财政年份:2004
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Numerical Analysis on Functional Defferential Equations and Partial Differential Equations
泛函微分方程和偏微分方程的调和分析和数值分析
- 批准号:
11640155 - 财政年份:1999
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Research and Applied Numerical Analysis in Partial Differential Equations and Functional Partial Differential Equations
偏微分方程和泛函偏微分方程的基础研究和应用数值分析
- 批准号:
09640163 - 财政年份:1997
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Irreducibility and hypertranscendence of non-linear difference equations
非线性差分方程的不可约性和超超越性
- 批准号:
24840005 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research on comparisons of Global Properties of solutions of Non-linear Difference Equations and solutions of Nonlinear Phenomena.
非线性差分方程解与非线性现象解的全局性质比较研究。
- 批准号:
15540217 - 财政年份:2003
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




