On the structure of singular solutions for degenerate elliptic equations

简并椭圆方程奇异解的结构

基本信息

  • 批准号:
    14540151
  • 负责人:
  • 金额:
    $ 2.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

1.On the structue of singular solutions for degenerate ellptic equations :(1)We studied p-harmomic equation with strong positive nonlinear terms in the right-hand side systematically, and established the unique existence results of minimal solutions. Moreover we studied very well linearized operators at the minimal solutions. Proving fundamental properties of the linearized operators, we made clear the coercivity and positivity of the operator and applied them to construct the theory of Bifurcation.(2)We studied various type of generalized Hardy-Sobolev-Rellich inequalities, and improved them by finding out sharp missing terms. We applied them to the study of Blow-up solutions.2.On the regularity of solutions for genuinely degenerated elliptic equations :The existence of bounded solutions for degenerate elliptic equations were studied. To study further regularities, multiplicative Sobolev inequalities with weghts were established.3.On the variational problems with critical nonlinear terms and singular solutions :Using the results in the above, singular variational problems were investigated.4.The potential theory for degenerate elliptic operators :Multi-parabolic operator was studied and generalized mean-value property was established.
1.关于退化椭圆型方程奇异解的结构:(1)系统地研究了右端具强正非线性项的p-调和方程,建立了极小解的唯一存在性结果。此外,我们还研究了极小解上的线性化算子。证明了线性化算子的基本性质,明确了算子的矫顽性和正性,并将其应用于构造分支理论。(2)研究了各种类型的广义Hardy-Sobolev-Rellich不等式,并通过找出尖锐的缺失项对其进行了改进。2.关于真退化椭圆方程解的正则性:研究了退化椭圆型方程有界解的存在性。为了进一步研究正则性,建立了带权重的乘性Sobolev不等式。3.关于具有临界非线性项和奇异解的变分问题:利用上述结果,研究了奇异变分问题。4.研究了退化椭圆算子的位势理论:多重抛物算子,建立了广义中值性质。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Missing terms in generalized Hardy inequalities and its application
广义Hardy不等式中的缺失项及其应用
Missing terms in Hardy-Sobolev inequalities and its application.
Hardy-Sobolev 不等式中的缺失项及其应用。
関数解析の基礎
泛函分析基础知识
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    堀内利郎
  • 通讯作者:
    堀内利郎
堀内利郎: "On the minimal solution for quasilinear degenerate elliptic equation and its blow-up"Journal Math.Kyoto Univ.. (To appear). (2004)
Toshiro Horiuchi:“关于拟线性简并椭圆方程的最小解及其放大”Journal Math.Kyoto Univ..(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
大西和榮: "Direct numerical identification of boundary values in the Laplace equation"Journal of Computational and Applied Mathematics. 152-1-2. 161-174 (2003)
Kazue Onishi:“拉普拉斯方程中边界值的直接数值识别”计算与应用数学杂志152-1-174(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HORIUCHI Toshio其他文献

「2016-2017日本學界中國出土簡帛研究概述」
《2016-2017年度日本学界:中国出土平装书研究综述》
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    根本裕史;HORIUCHI Toshio;草野友子;鈴木祐丞;根本裕史;Ryota Akiyoshi;川尻洋平;Toshio Horiuchi;草野友子;Hiroshi Nemoto;ヨーキム・ガルフ(鈴木祐丞訳);Ryota Akiyoshi;川尻洋平;草野友子;Ryota Akiyoshi;草野友子;鈴木祐丞;根本裕史;Yohei Kawajiri;鈴木祐丞;Ryota Akiyoshi and Grigori Mints;Yohei Kawajiri;草野友子;Hiroshi Nemoto;鈴木祐丞;Yohei Kawajiri;Ryota Akiyoshi and Kazushige Terui;根本裕史;草野友子・中村未来・海老根量介
  • 通讯作者:
    草野友子・中村未来・海老根量介
清華簡『封許之命』の基礎的検討
清华论文《丰府无命》的基础审查
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    根本裕史;HORIUCHI Toshio;草野友子;鈴木祐丞;根本裕史;Ryota Akiyoshi;川尻洋平;Toshio Horiuchi;草野友子;Hiroshi Nemoto;ヨーキム・ガルフ(鈴木祐丞訳);Ryota Akiyoshi;川尻洋平;草野友子
  • 通讯作者:
    草野友子
Pratyabhijna Philosophy: Kashmir and South India
Pratyabhijna 哲学:克什米尔和南印度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    根本裕史;HORIUCHI Toshio;草野友子;鈴木祐丞;根本裕史;Ryota Akiyoshi;川尻洋平;Toshio Horiuchi;草野友子;Hiroshi Nemoto;ヨーキム・ガルフ(鈴木祐丞訳);Ryota Akiyoshi;川尻洋平;草野友子;Ryota Akiyoshi;草野友子;鈴木祐丞;根本裕史;Yohei Kawajiri;鈴木祐丞;Ryota Akiyoshi and Grigori Mints;Yohei Kawajiri;草野友子;Hiroshi Nemoto;鈴木祐丞;Yohei Kawajiri;Ryota Akiyoshi and Kazushige Terui;根本裕史;草野友子・中村未来・海老根量介;Yohei Kawajiri;キェルケゴール(鈴木祐丞訳・解説);根本裕史;草野友子;Yohei Kawajiri
  • 通讯作者:
    Yohei Kawajiri
日記における信仰をめぐる思索のフィクション性について
论日记信仰思想的虚构性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    根本裕史;HORIUCHI Toshio;草野友子;鈴木祐丞;根本裕史;Ryota Akiyoshi;川尻洋平;Toshio Horiuchi;草野友子;Hiroshi Nemoto;ヨーキム・ガルフ(鈴木祐丞訳);Ryota Akiyoshi;川尻洋平;草野友子;Ryota Akiyoshi;草野友子;鈴木祐丞
  • 通讯作者:
    鈴木祐丞
「私は何を見つけたのか? 私の「私」ではなかった」――キェルケゴールの日記と、仮名の自伝著述について
“我发现了什么?这不是我的‘我’——关于克尔凯郭尔的日记和笔名自传。”
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    根本裕史;HORIUCHI Toshio;草野友子;鈴木祐丞;根本裕史;Ryota Akiyoshi;川尻洋平;Toshio Horiuchi;草野友子;Hiroshi Nemoto;ヨーキム・ガルフ(鈴木祐丞訳)
  • 通讯作者:
    ヨーキム・ガルフ(鈴木祐丞訳)

HORIUCHI Toshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HORIUCHI Toshio', 18)}}的其他基金

Annotated Translastion of a Treatise by Vasuvbandhu: Focusing on Chapter 2 of the Vyakhyayukti
Vasuvbandhu 论文注译:聚焦《Vyakhyayukti》第二章
  • 批准号:
    23720024
  • 财政年份:
    2011
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the improvement of classical inequalities and its applications to nonlinear degenerate elliptic equations
论经典不等式的改进及其在非线性简并椭圆方程中的应用
  • 批准号:
    20540153
  • 财政年份:
    2008
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the linearization of quasilinear degenerate elliptic equations and the structure of singular solutions
拟线性简并椭圆方程的线性化及奇异解的结构
  • 批准号:
    17540146
  • 财政年份:
    2005
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The research on degenerate elliptic partial differential equations by the method of real analysis
简并椭圆偏微分方程的实分析方法研究
  • 批准号:
    11640150
  • 财政年份:
    1999
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the regularity of solutions for degenerate elliptic equations
简并椭圆方程解的正则性
  • 批准号:
    09640153
  • 财政年份:
    1997
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了