A characterization of the complex Euclidean space by its holomorphic automorphism group

复欧几里得空间的全纯自同构群的表征

基本信息

  • 批准号:
    14540165
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

1.Kodama and Shimizu studied a fundamental problem on a characterization of complex manifold by its holomorphic automorphism group Aut(M). In particular, they clearified the structure of complex manifold M with Aut(M) isomorphic to Aut(C^k×(C^*)^l) as topological groups ; and also, as an application of their method, they obtained some new results on the structure of complex manifold admitting a holomorphic action of the direct product of unitary groups.2.Okuyama studied the linearlization problem for irrationally indifferent cycle of points of rational functions and transcendental entire functions, and obtained some new fundamental results.3.Imayoshi studied some problems on the monodromy of holomorphic families of Riemann surfaces, and he obtained some new results. And, Noguchi studied the value distribution and rational points of holomorphic curves, and obtained new results. It is expected that his results have various applications in the study on Kobayashi hyperbolic manifolds.
1.Kodama和Shimizu研究了复流形用其全纯自同构群Aut(M)表征的一个基本问题。特别地,他们澄清了Aut(M)同构于Aut(C^ kx (C^*)^l)为拓扑群的复流形M的结构;作为该方法的一个应用,他们还得到了关于复流形的结构的一些新结果,这些结果承认酉群的直积具有全纯作用。Okuyama研究了有理函数和超越全函数的点的无理性无关环的线性化问题,得到了一些新的基本结果。Imayoshi研究了Riemann曲面全纯族的单态问题,得到了一些新的结果。Noguchi研究了全纯曲线的值分布和有理点,得到了新的结果。期望他的结果在小林双曲流形的研究中有广泛的应用。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Path integral for the radial Dirac equation
径向狄拉克方程的路径积分
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ogawa;Y.Koyama;S.Oda;Takahiko Nakazi;Takashi Ichinose
  • 通讯作者:
    Takashi Ichinose
Atsushi Kasue: "Convergence of Riemannian manifolds and Laplace operators. I"Ann.l'Institute Fourier. 52. 1219-1257 (2002)
Atsushi Kasue:“黎曼流形和拉普拉斯算子的收敛。I”Ann.lInstitute Fourier。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
、A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space,
, 通过从复欧几里得空间中省略坐标超平面而获得的空间的群论表征,
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    清水悟;児玉秋雄
  • 通讯作者:
    児玉秋雄
Takashi Ichinose, Brian Jefferies: "The propagator of the radial Dirac equation"J.Math.Phys.. 43. 3963-3983 (2002)
Takashi Ichinose,Brian Jefferies:“径向狄拉克方程的传播器”J.Math.Phys.. 43. 3963-3983 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A reducibility problem for monodromy of some surface bundles
一些面丛单性的可约化问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KODAMA Akio其他文献

KODAMA Akio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KODAMA Akio', 18)}}的其他基金

Impact of Clopidogrel and Prasugrel on suppression of autogenous vein graft.
氯吡格雷和普拉格雷对自体静脉移植物抑制的影响。
  • 批准号:
    15K10240
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental study of desiccant dehumidification and heating for agricultural greenhouse
农业大棚干燥剂除湿加热试验研究
  • 批准号:
    25660197
  • 财政年份:
    2013
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Characterizations of complex manifolds by means of holomorphic automorphism groups
通过全纯自同构群表征复流形
  • 批准号:
    24540166
  • 财政年份:
    2012
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of adsorptive separation of CO2 assisted by humidity swing
变湿辅助吸附分离CO2的研究
  • 批准号:
    23651067
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A study on characterization problems of complex manifolds by means of holomorphic automorphism groups
利用全纯自同构群研究复流形表征问题
  • 批准号:
    21540169
  • 财政年份:
    2009
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interpretation of simultaneous heat and mass transfer in an adsorptive desiccant rotor for its optimal design and operation
解释吸附式干燥剂转子中同时传热和传质的最佳设计和操作
  • 批准号:
    19560752
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A characterization of a complex manifold admitting an action of the direct product of unitary groups by holomorphic automorphisms
通过全纯自同构承认酉群直积作用的复流形的表征
  • 批准号:
    17540153
  • 财政年份:
    2005
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the structure of complex ellipsoids
复杂椭球结构的研究
  • 批准号:
    12640162
  • 财政年份:
    2000
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了