Research of operator inequality and spectrum using computer
算子不等式与谱的计算机研究
基本信息
- 批准号:14540190
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Under the research project with title "Research of operator inequality and spectrum using computer", Takayuki Furuta (emerutus professor of Hirosaki University), Tadasi Huruya (Professor of Niigata University), Takeaki Yamazaki (Kanagawa University) and Muneo Cho (Kanagawa University) studied for three years. In this period, we invited V.Muller (Professor of Czech Academy), Andrzej Soltysiak (Professor of Adam Mickiewicz University), Woo Young Lee (Professor of Seoul University), Il Bong Jung (Professor of Kyungpook National University) and E.Albrecht (Professor of Universitat des Saarlandes) and studied this problem with them. Cho and Huruya studied principal functions started by M.Krein and studied continuously by J.Helton, R.Howe, R.Carey, J.Pincus, D.Xia and M.Putinar, who studied it in case of hyponormal operators and semi-hyponormal operators. We extended it in case of p-hyponormal operators and showed that the principal function of the Aluthge transformation is same the original one. We made 23 papers about these results. These have been published or will be published, recently. Furuta studied operator inequalities and got characterizations of chaotic order and generalized Kantorovich constant. He also applied these to Information Theory. He wrote 16 papers about these results. These have been published or will be published, recently. Yamazaki studied spectrum of operators. He got a spectrum-invariant transformation from class A to hyponormal operators. Also he studied numerical ranges by Aluthge transformation. He wrote 10 papers about these results. These have been published or will be published, recently. By this support, we wrote 49 papers. We express our cordial thanks for this Grant.
在题为“利用计算机研究算子不等式和谱”的研究项目下,古田隆之(广崎大学名誉教授)、呼谷忠司(新泻大学教授)、山崎武昭(神奈川大学)和赵宗雄(神奈川大学)进行了为期三年的研究。在此期间,我们邀请了V.Muller(捷克科学院教授)、Andrzej Soltysiak(亚当密茨凯维奇大学教授)、Woo Young Lee(首尔大学教授)、Il Bong Jung(庆北国立大学教授)和E.Albrecht(萨尔兰德斯大学教授),与他们一起研究这个问题。Cho和Huruya从M.Krein开始研究主函数,J.Helton,R.Howe,R.Carey,J.Pincus,D.Xia和M.Putinar继续研究,他们研究了亚正规算子和半亚正规算子的情况。我们将其推广到p-亚正规算子的情形,并证明了变换的主函数与原主函数相同。我们对这些结果发表了23篇论文。最近已经出版或即将出版。Furuta研究了算子不等式,得到了混沌序和广义Kantorovich常数的刻画.他还将这些应用于信息理论。他写了16篇关于这些结果的论文。最近已经出版或即将出版。山崎研究了算子谱。他得到了从A类到亚正规算子的谱不变变换。此外,他研究了数值范围内的变换。他写了10篇关于这些结果的论文。最近已经出版或即将出版。在此基础上,共撰写论文49篇。我们对这笔赠款表示衷心的感谢。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Cho, A.Soltysiak, T.Yamazaki: "On approximate point joint spectrum of p-hyponomal and log-hyponormal operators"Commentationes Math.. 63. 33-41 (2003)
K.Cho、A.Soltysiak、T.Yamazaki:“关于 p 次正规算子和对数次正规算子的近似点联合谱”Commentationes Math.. 63. 33-41 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Cho, J.I.Lee: "p-Hyponormality is not translation-invariant"Proc.Amer.Math.Soc.. 131. 3109-3111 (2003)
M.Cho, J.I.Lee:“p-次正规性不是平移不变的”Proc.Amer.Math.Soc.. 131. 3109-3111 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ando, T.Yamazaki: "The iterated Aluthge transforms of a 2-by-2 matrix converge"Linear Algebra Appl.. 375. 299-309 (2003)
T.Ando、T.Yamazaki:“2×2 矩阵收敛的迭代 Aluthge 变换”Linear Algebra Appl.. 375. 299-309 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
長宗雄, 古谷正, R.Curto: "N-tuples of operators satisfying σ_T(AB)=σ_T(BA)"Linear Algebra Appl.. 341. 291-298 (2002)
Nagamuneo、Masaru Furuya、R.Curto:“满足 σ_T(AB)=σ_T(BA) 的运算符的 N 元组”线性代数应用.. 341. 291-298 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHO Muneo其他文献
CHO Muneo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHO Muneo', 18)}}的其他基金
Research for the interplay between measurable dynamical systems and topological dynamical systems through the basic method of operator
通过算子的基本方法研究可测动力系统与拓扑动力系统之间的相互作用
- 批准号:
24540195 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in the noncommutative dynamical systems through the method of functional analysis together with the research in the interplay between topological dynamical systems and operator theory
通过泛函分析方法研究非交换动力系统以及拓扑动力系统与算子理论之间相互作用的研究
- 批准号:
20540192 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Riemann-Hilbert problem
黎曼-希尔伯特问题
- 批准号:
09640229 - 财政年份:1997
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Trace Formula Method and the Arithmetic and Geometry of Modular Varieties in the Langlands Program
朗兰兹纲领中的迹公式法与模簇的算术和几何
- 批准号:
2132670 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Cohomology of Arithmetic Groups and the Stable Trace Formula
算术群的上同调与稳定迹公式
- 批准号:
545733-2020 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Postdoctoral Fellowships
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Beyond Endoscopy and the stable trace formula
超越内窥镜检查和稳定的痕量公式
- 批准号:
RGPIN-2020-04547 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The local trace formula as a motivic construction
作为动机构造的局部迹公式
- 批准号:
519125-2018 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
The Satake transform and the trace formula
Satake变换和迹公式
- 批准号:
RGPIN-2017-03784 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Cohomology of Shimura Curves: Towards a Topological Trace Formula
Shimura 曲线的上同调:走向拓扑迹公式
- 批准号:
487447-2016 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral