The Satake transform and the trace formula

Satake变换和迹公式

基本信息

  • 批准号:
    RGPIN-2017-03784
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The Satake transform and L-functions Classically, L-functions with Euler products are an indispensable tool for investigating properties of prime numbers, and more generally properties of complicated structures occurring in number theory. They were introduced by Dirichlet in the early nineteenth century, following observations of the Swiss mathematicain Leonhard Euler. Since then various similar functions have been introduced by many mathematicians, often with very appealing applications, but it was only in the winter of 1966/1967 that the Canadian mathematician Robert Langlands defined for the first time the most general known form of L-functions with Euler products, associated simultaneously to automorphic forms and representations of Galois groups. Since then, a number of cases of his conjectures regarding these functions have been verified, but until very recently essentially all paths to further cases have come to dead ends. Langlands himself suggested around 2000 a possible way to deal with the problem, but for a long time how to follow his suggestions was not very clear. In recent years, however, the Fields medallist Bao Chau Ngo and others have taken up this idea in the form of utilization of local functions not necessarily of compact support in James Arthur's extension of the Selberg Trace Formula. The functions concerned are called `basic functions'. They are parametrized by irreducible representations r of Langlands' L-groups, and they contain, among others, the functions on a p-adic group bi-invariant on left and right by a maximal compact subgroup whose Satake transform is the L-function associated by Langlands to r. There are by now several characterizations of basic functions, but all of them are rather abstract. My contribution so far has been to describe all of them in completely explicit terms in the simplest case of GL(2), and to find by computation conjectural and non-trivial examples for a few other groups of low rank. I hope to find a pattern to these examples so as to make a conjecture for all cases. Early stages of this work are reported on in a paper that will to appear soon in an issue of the Bulletin of the Iranian Mathematical Society honouring the work of the Iranian-American Freydoon Shahidi. One of the surprising by-products of this has been a number of intriguing examples of how the symmetric powers of irreducible representations of complex groups decompose, in which hitherto unseen phenomena appear. This is a classical question, first raised in some form over a hundred years ago. It is not at all clear to what extent these will become a real theory, but results so far are very promising. I expect these results to be applied soon by James Arthur and Salim Ali Altug in applications to the Trace Formula.
Satake变换和l函数

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casselman, William其他文献

Casselman, William的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Casselman, William', 18)}}的其他基金

The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on arithmetic quotients
算术商分析
  • 批准号:
    8472-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

视觉智能Shapelet Transform驱动的SHM数据关联分析与域自适应迁移机制深度学习
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
  • 批准号:
    10854398
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
The Satake transform and the trace formula
Satake变换和迹公式
  • 批准号:
    RGPIN-2017-03784
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Metabolism Core
新陈代谢核心
  • 批准号:
    10573145
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
Explicit Fourier transform of trace formulas and its applications to arithmetic
迹公式的显式傅里叶变换及其在算术中的应用
  • 批准号:
    15K04795
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of operator inequality and spectrum using computer
算子不等式与谱的计算机研究
  • 批准号:
    14540190
  • 财政年份:
    2002
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Life Sciences Mass Spectrometry Facility (LSMSF-SR)
生命科学质谱设备 (LSMSF-SR)
  • 批准号:
    10223205
  • 财政年份:
    1998
  • 资助金额:
    $ 1.02万
  • 项目类别:
Life Sciences Mass Spectrometry Facility (LSMSF-SR)
生命科学质谱设备 (LSMSF-SR)
  • 批准号:
    10658889
  • 财政年份:
    1998
  • 资助金额:
    $ 1.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了