Studies of Correspondence between Classical and Quantum Dynamical Systems
经典动力系统与量子动力系统对应关系的研究
基本信息
- 批准号:14540210
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main result obtained in the research concerns with the classical-quantum correspondence for the mechanical system in a magnetic field. The result was presented at the international workshop ‘Spectral theory of differential operators and the inverse problems' held in the Research Institute for Mathematical Sciences in Kyoto University (October 28-November 1) in 2002. The title of the talk was ‘Quantum energies and classical orbits in a magnetic field'. Later the paper described the details of the results was published in the Proceedings of the Workshop from American Mathematical Society in 2004.The result of our research is the following. We remark first that a magnetic field on a manifold is regarded as the curvature of a connection given on a principal bundle, and the dynamical flow in the magnetic field can be analyzed as the geodesic flow on the bundle relative to so-called the Kaluza-Klein metric. On the basis of this formulation we considered the relationship between the class … More ical flow and the quantum system (the Schroedinger operator), as a result, we clarified that some classical orbit satisfying ‘quantization condition' corresponds to an approximate energy level in a semi-classical sense.This result is a generalization of the former result by Ralston and Guillemin for the geodesic flow to the case of magnetic flow. It also gives an interesting view to the trace formula. The key tool for the research was the theory of Fourier integral operators of Hermite type which is developed by Boutet de Monvel and Guillemin.Next we aimed to generalize the results for the magnetic system (the U(1)-gauge system) to the non-abelian gauge systems. We first reconstructed a geometric formulation (originally due to Guillemin, Uribe, Zelditch and so on) of the system in the frame-work of principal G-bundle, and obtained some results for the system in the non-abelian gauge field, which is a generalization of the results for the system in the magnetic field (the U(1)-gauge field). More precisely we clarified the relationship between so-called the Maslov quantization condition (and classical periodic orbits) and the asymptotic properties of quantum energy levels. The paper containing these results is being prepared. Less
研究的主要结果涉及磁场中力学系统的经典-量子对应。该结果于2002年10月28日至11月1日在京都大学数学科学研究所举行的国际研讨会“微分算子的谱理论和逆问题”上发表。演讲的题目是“磁场中的量子能量和经典轨道”。本文详细介绍了本文的研究结果,并发表在2004年美国数学学会的Proceedings of the Workshop上。我们首先指出,流形上的磁场被看作是主丛上给定联络的曲率,磁场中的动力学流可以被分析为丛上相对于所谓的卡鲁扎-克莱因度量的测地线流。在这个公式的基础上,我们考虑了类之间的关系。 ...更多信息 通过对量子流和量子系统(Schroedinger算符)的研究,阐明了满足量子化条件的经典轨道对应于半经典意义下的近似能级,这一结果是Ralston和Guillemin关于测地流的结果在磁流情况下的推广.它还提供了一个有趣的视图跟踪公式。研究的主要工具是由Boutet de Monvel和Guillemin发展的Hermite型Fourier积分算子理论。接下来,我们的目标是将磁系统(U(1)-规范系统)的结果推广到非交换规范系统。我们首先在主G-丛框架下重建了系统的一个几何公式(最初是Guillemin,Uribe,Zelditch等人提出的),得到了非阿贝尔规范场中系统的一些结果,它是磁场(U(1)-规范场)中系统结果的推广。更准确地说,我们澄清了所谓的马斯洛夫量子化条件(和经典周期轨道)和量子能级的渐近性质之间的关系。目前正在编写载有这些结果的文件。少
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Eigenvalues associated with a periodic orbit of the magnetic flow
与磁流周期轨道相关的特征值
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Ruishi Kuwabara
- 通讯作者:Ruishi Kuwabara
Ruishi Kuwabara: "Eigenvalues associated with a periodic orbit of the magnetic flow"Contemporary Mathematics. (発表予定). (2003)
Ruishi Kuwabara:“与磁流周期轨道相关的特征值”(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUWABARA Ruishi其他文献
KUWABARA Ruishi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUWABARA Ruishi', 18)}}的其他基金
Spectra of Elliptic Operators on Manifolds and Classical Mechanics
流形和经典力学上的椭圆算子谱
- 批准号:
11640205 - 财政年份:1999
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Bloch theory for the Schroedinger operator
薛定谔算子的布洛赫理论
- 批准号:
524947-2018 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
University Undergraduate Student Research Awards
Analysis of superlattice structure using spectral analysis of non-linear Schroedinger operator
使用非线性薛定谔算子谱分析分析超晶格结构
- 批准号:
24540208 - 财政年份:2012
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of superlattice structure using spectal analysis of Schroedinger operator
使用薛定谔算子谱分析分析超晶格结构
- 批准号:
20540204 - 财政年份:2008
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)