Spectra of Elliptic Operators on Manifolds and Classical Mechanics
流形和经典力学上的椭圆算子谱
基本信息
- 批准号:11640205
- 负责人:
- 金额:$ 0.32万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the research project is to investigate the relationships between the properties of classical mechanics and the spectrum of the associated Schrodinger operator on the Riemannian manifolds.Particularly, we have payed attention to the mechanics in a magnetic field on the Riemannian manifold. A magnetic field is regarded as a closed two-form on the manifold, and the motion of a charged particle in the magnetic field is formulated as the flow of the Hamiltonian system with the symplectic structure twisted by the two-form. On the other hand, the associated quantum system or the Schrodinger operator is the Laplacian on the complex line bundle naturally defined by the integral closed two-form (the magnetic field) on the manifold. In this context, we have obtained the following results :1. We have considered the quantization condition for the invariant torus of the Hamiltonian system of magnetic flow, and have clarified by virtue of the theory of Fourier integral operators that the (semi-classical) energy levels determined by the quantization condition give a "good" approximation of the true energies of the quantum system.2. We have, moreover, considered the "quantization condition" for the stable periodic orbits of the magnetic flow, and have similarly clarified that the classical "energy" of the a suitable periodic orbit gives an approximation of the energy of the associated quantum system. The tool used in this research if the theory of Fourier integral operators of Hermite type which are the operator corresponding to the isotropic submanifold.
本研究的目的是研究黎曼流形上经典力学的性质与伴随薛定谔算子的谱之间的关系,特别地,我们关注了黎曼流形上磁场中的力学。将磁场视为流形上的闭合二态,将带电粒子在磁场中的运动表示为辛结构被二态扭转的哈密顿系统的流动。另一方面,相关联的量子系统或薛定谔算符是复线丛上的拉普拉斯算符,该复线丛自然地由流形上的积分闭合二态(磁场)定义。在此背景下,我们得到了以下结果:1.我们考虑了磁流哈密顿系统不变环面的量子化条件,并利用傅里叶积分算符理论阐明了由量子化条件决定的(半经典)能级对量子系统的真实能量给出了一个“良好”的近似。此外,我们还考虑了稳定的磁流周期轨道的“量子化条件”,并同样阐明了一个合适的周期轨道的经典“能量”给出了相关量子系统能量的近似。本研究中使用的工具是Hermite型傅立叶积分算子理论,它是对应于迷向子流形的算子。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ruishi Kuwabara: "Classical orbits and quantum energies of mechanics (in Japanese)"RIMS.Kokyuroku. vol.1119. 26-34 (1999)
Ruishi Kuwabara:“力学的经典轨道和量子能量(日语)”RIMS.Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ruishi Kuwabara: "Periodic orbits and quantum energies of mechanics in a magnetic field (in Japanese)"RIMS.Kokyuroku. (in Press).
Ruishi Kuwabara:“磁场中力学的周期轨道和量子能(日语)”RIMS.Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
桑原類史: "磁場における力学系の周期軌道と量子エネルギー分布"数理解析研究所講究録. (印刷中).
Ruishi Kuwabara:“磁场中动力系统的周期轨道和量子能量分布”数学分析研究所的 Kokyuroku(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUWABARA Ruishi其他文献
KUWABARA Ruishi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUWABARA Ruishi', 18)}}的其他基金
Studies of Correspondence between Classical and Quantum Dynamical Systems
经典动力系统与量子动力系统对应关系的研究
- 批准号:
14540210 - 财政年份:2002
- 资助金额:
$ 0.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 0.32万 - 项目类别:
ARC Future Fellowships
LEAPS-MPS: Elliptic theory for the Schrodinger operator
LEAPS-MPS:薛定谔算子的椭圆理论
- 批准号:
2137743 - 财政年份:2021
- 资助金额:
$ 0.32万 - 项目类别:
Standard Grant
Distribution of Eigenvalues of the Schrodinger Operator on Compact Manifolds. Matrix Model and Asymptotics of Orthogonal Polynomials
紧流形上薛定谔算子的特征值分布。
- 批准号:
9623214 - 财政年份:1996
- 资助金额:
$ 0.32万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Properties of a Random Schrodinger Operator
数学科学:随机薛定谔算子的谱性质
- 批准号:
9210806 - 财政年份:1992
- 资助金额:
$ 0.32万 - 项目类别:
Standard Grant














{{item.name}}会员




