Study of nonlinear differential equations via variational methods
通过变分法研究非线性微分方程
基本信息
- 批准号:14540216
- 负责人:
- 金额:$ 2.69万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study the existence and multiplicity of solutions of nonlinear differential equations via variational methods. In particular, we study singular perturbation problems.1.We study the existence and multiplicity of solutions of nonlinear scalar field equations : -Δu+V(x)u=f(u) in R^N. Usually in such a problem global conditions on nonlinearity f(u)(ex.global Ambrosetti-Rabinowitz condition) are required to ensure the existence of solutions. In this study we tried to obtain an existence result without such global assumptions and we find that it is possible if we require sufficiently fast decay of the potential V(x).2.We also study singular perturbation problem : -Δu+λ^2a(x)u=|u|^<p-1>u in R^N, where a(x)【greater than or equal】0. As a limit problem as λ→∞, a Dirichlet boundary value problem -Δu=|u|^<p-1>u, u|_<∂Ω>=0 in Ω≡{x ∈R^N;a(x)=0} appears. We assume Ω consists of several bounded connected components Ω_1,【triple bond】, Ω_κ and for given solutions u_i(x) of the Dirichlet problem in Ω_i, we try to find a solution u_λ(x) in R^N whose limit is u_i(x) in Ω_i (connecting problem). We succeed to find a solution joining Mountain Pass solutions without non-degeneracy conditions. Also we show that there are infinitely many sign-changing solutions that are connectable with Mountain Pass solutions.3.For 1-dimensional Allen-Cahn equations and Schrodinger equaitons, we study the characterization of a family of solutions in the setting of singular perturbation. More precisely, we consider a family of solutios with increasing number of layers or spikes. We give a characterization of such a family using "limit enery function" or "envelop function". Conversely for addmissible patterns we construct corresponding families of solutions via variational methods.
用变分方法研究了非线性微分方程解的存在性和多重性。特别地,我们研究了奇异摄动问题。研究了非线性标量场方程-Δu+V(x)u=f(u) in R^N的解的存在性和多重性。通常在这类问题中,非线性f(u)(例如)的全局条件。全局Ambrosetti-Rabinowitz条件)来保证解的存在性。在这项研究中,我们试图在没有这种全局假设的情况下获得存在性结果,我们发现,如果我们要求电位V(x).2的衰变足够快,这是可能的。我们还研究了奇异摄动问题:-Δu+λ^2a(x)u=|u|^<p-1>u在R^N中,其中a(x)【大于等于】0。作为λ→∞的极限问题,一个Dirichlet边值问题-Δu=|u|^<p-1>u, u|_<∂Ω>=0在Ω≡{x∈R^N;会出现一个(x) = 0}。我们假设Ω由几个有界连通分量Ω_1,【三键】,Ω_κ组成,对于Ω_i中Dirichlet问题的已知解u_i(x),我们试图在R^N中找到一个极限为Ω_i中u_i(x)的解(连接问题)。我们成功地找到了一个没有非简并条件的连接Mountain Pass解的解。并证明了有无穷多个变号解与Mountain Pass解可连通。对于一维Allen-Cahn方程和Schrodinger方程,研究了奇异摄动下一族解的性质。更准确地说,我们考虑一组具有越来越多的层或尖峰的解决方案。我们用“极限能函数”或“包络函数”给出了这种族的表征。相反,对于可容许模式,我们通过变分方法构造相应的解族。
项目成果
期刊论文数量(72)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
L.Jeanjean, K.Tanaka: "A positive solution for an asymptotically linear elliptic problem on R^N autonomous at infinity"ESAIM Control Optim. Calc. Var.. 7. 597-614 (2002)
L.Jeanjean、K.Tanaka:“R^N 无穷大自治的渐近线性椭圆问题的正解”ESAIM 控制优化。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Shibata: "Precise spectral asymptotics for nonlinear Sturm-Liouville problems"J. Diff. Eq.. 180. 374-394 (2002)
T.Shibata:“非线性 Sturm-Liouville 问题的精确谱渐进”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
- DOI:10.1007/s00526-003-0261-6
- 发表时间:2004-11
- 期刊:
- 影响因子:2.1
- 作者:L. Jeanjean;Kazunaga Tanaka
- 通讯作者:L. Jeanjean;Kazunaga Tanaka
Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation
- DOI:10.1016/s0022-0396(02)00181-x
- 发表时间:2003-06
- 期刊:
- 影响因子:2.4
- 作者:K. Nakashima
- 通讯作者:K. Nakashima
Symmetry-Breaking Phenomena in an Optimization Problem for some Nonlinear Elliptic Equation
- DOI:10.1007/s00245-004-0803-5
- 发表时间:2004-08
- 期刊:
- 影响因子:1.8
- 作者:K. Kurata;Masataka Shibata;S. Sakamoto
- 通讯作者:K. Kurata;Masataka Shibata;S. Sakamoto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Kazunaga其他文献
TANAKA Kazunaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Kazunaga', 18)}}的其他基金
A comprehensive study of nonlinear problems via variational approaches
通过变分方法综合研究非线性问题
- 批准号:
20340037 - 财政年份:2008
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Variational study of nonlinear diffential equations
非线性微分方程的变分研究
- 批准号:
11640216 - 财政年份:1999
- 资助金额:
$ 2.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 2.69万 - 项目类别:
Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004515/1 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/1 - 财政年份:2023
- 资助金额:
$ 2.69万 - 项目类别:
Research Grant
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2022
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2021
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2021
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Nonlocal and Nonlinear Differential Equations
非局部和非线性微分方程
- 批准号:
563049-2021 - 财政年份:2021
- 资助金额:
$ 2.69万 - 项目类别:
University Undergraduate Student Research Awards
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
DGECR-2020-00358 - 财政年份:2020
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Launch Supplement
Methods for Solving Nonlinear Differential Equations Describing Water Waves
求解描述水波的非线性微分方程的方法
- 批准号:
RGPIN-2020-06417 - 财政年份:2020
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
- 批准号:
RGPIN-2016-06098 - 财政年份:2020
- 资助金额:
$ 2.69万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




