Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics

数据分析中的不动点理论、非线性微分方程和计算算法

基本信息

  • 批准号:
    RGPIN-2016-06098
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research overlaps with three closely related areas in applied mathematics and computing: fixed point theory, nonlinear differential equations and computational algorithms for data analytics. Each topic on its own is important and substantial. Connecting the three areas together (fixed-point theory, nonlinear differential equations, and neural networks) along a continuum from theory to real-world applications is innovative and the central focus of my research. As a very powerful and important tool in studying differential equations, fixed point theory has diverse applications in various fields such as Biology, Chemistry, Economics, Engineering, Game Theory, Physics, and Computer Sciences. The research lies in the development and application of new mathematical techniques in fixed point theory to study solutions for nonlinear differential equations arising from population dynamics, reaction-diffusion systems, image classifications, neural networks and social activities. In particular, systems of differential equations involving multiple parameters with non-local boundary or initial conditions will be considered. In applications, this class of differential systems represents gas diffusion, heat conduction, elastic beam and in general feedback controls by which the “sum” of the states of the process along its evolution equals the initial state in real processes from Physics, Chemistry or Biology. In addition to topological methods from functional analysis, nonlinear analysis and linear operator theory, constructional techniques such as iteration, monotone mappings, upper and lower solutions will also be applied. On the computational side, new algorithms will be developed, implemented and tested using real-world data sets. System performance will be evaluated and documented. Computational approaches including numerical methods and computer simulations will be applied. New tools and methods will also be developed. The results will contribute across several fields in nonlinear analysis, dynamical systems, mathematical modeling and computational algorithms for data analytics. The last field, in particular, has received considerable attention of late. Our work will continue to contribute to the well-being of our Canadian research community, both in fundamental and applied terms.
所提出的研究与应用数学和计算中三个密切相关的领域重叠:不动点理论、非线性微分方程和数据分析的计算算法。每个主题本身都是重要而充实的。将这三个领域(不动点理论、非线性微分方程和神经网络)沿着从理论到现实应用的连续体连接在一起是创新的,也是我研究的中心焦点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng, Wenying其他文献

STABILITY ANALYSIS ON AN ECONOMIC EPIDEMIOLOGICAL MODEL WITH VACCINATION
  • DOI:
    10.3934/mbe.2017051
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Avusuglo, Wisdom S.;Abdella, Kenzu;Feng, Wenying
  • 通讯作者:
    Feng, Wenying
Mining network data for intrusion detection through combining SVMs with ant colony networks
On the number of positive solutions of a nonlinear algebraic system
  • DOI:
    10.1016/j.laa.2006.10.026
  • 发表时间:
    2007-04-15
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Zhang, Guang;Feng, Wenying
  • 通讯作者:
    Feng, Wenying

Feng, Wenying的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng, Wenying', 18)}}的其他基金

Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning Applied to Energy Forecast: Implementation and Evaluation
深度学习应用于能源预测:实施和评估
  • 批准号:
    524623-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Plus Grants Program
Computational Algorithms for Energy Efficiency and Cost Reduction
提高能源效率和降低成本的计算算法
  • 批准号:
    510601-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Engage Grants Program
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
  • 批准号:
    238869-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
  • 批准号:
    238869-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral properties and solutions for parameter dependent differential equations
参数相关微分方程的谱特性和解
  • 批准号:
    238869-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Homotopical Methods in Fixed Point Theory
不动点理论中的同伦方法
  • 批准号:
    2153772
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Geometry in projection methods and fixed-point theory
投影方法和不动点理论中的几何
  • 批准号:
    DP200100124
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic K-Theory in Fixed-Point Theory and Smooth Manifolds
定点理论和光滑流形中的代数 K 理论
  • 批准号:
    2005524
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Study of Nonlinear Functional Analysis based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析研究
  • 批准号:
    20K03660
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on game theory by Lefschetz fixed point theorem and discrete fixed point theorems
Lefschetz不动点定理和离散不动点定理研究博弈论
  • 批准号:
    20K03751
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Fixed Point Theory, Nonlinear Differential Equations and Computational Algorithms on Data Analytics
数据分析中的不动点理论、非线性微分方程和计算算法
  • 批准号:
    RGPIN-2016-06098
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Traces in Algebraic K-theory and Topological Fixed Point Invariants
代数 K 理论和拓扑不动点不变量中的迹
  • 批准号:
    1810779
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Efficient methods for nonsmooth quasiconvex optimization with complicated constraints based on fixed point theory
基于不动点理论的复杂约束非光滑拟凸优化高效方法
  • 批准号:
    17J09220
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了