Research of modular and quasimodular forms arising in various areas of mathematics and their application
数学各领域中出现的模和拟模形式的研究及其应用
基本信息
- 批准号:15340014
- 负责人:
- 金额:$ 5.57万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modular and quasimodular solutions of a differential equation that arose in our work with Don Zagier has been investigated. Of particular interest are modular solutions of weight fifth of integers, which are closely connected to the famous Rogers-Ramanujan functions, and quasimodular forms which turned out to be "extremal" in the sense we defined anew. The latter exteremal quasimodular forms were further studied in a joint work with Koike. We have given explicit formulas for them in case of depth one and two and found the differential equations they satisfy. We have made several interesting observations on the Fourier coefficients of extremal quasimodular forms of depth less than five, but could not give a proof. Also, as an application of quasimodular forms, we gave a condition for Fourier coefficients of cusp forms on the modular group being "ordinary" for a prime in terms of certain polynomials. A connection of this and the supersingular polynomials may be of some interest.Our study also concerns so called multiple zeta values. In particular, when we look closely into the double shuffle relations of the double zeta values, we are naturally led to the period polynomials of modular forms on the full modular group. To understand the connection, we have defined and studied the double Eisenstein series and computed their Fourier coefficients. As an application, we have found several formulas for the Fouries coefficients of the Ramanujan tau function, the coefficients of weight 12 cusp form known as the discriminant function or Jacobi's delta function.
研究了我们与Don Zagier合作中出现的一个微分方程的模解和拟模解。特别令人感兴趣的是与著名的Rogers-Ramanujan函数密切相关的整数权重的五分之一的模解,以及在我们重新定义的意义上被证明是“极值”的准模形式。后者的外部拟模形式在与Koike的合作中被进一步研究。在深度为1和2的情况下,我们给出了它们的显式公式,并找到了它们所满足的微分方程。我们对深度小于5的极值拟模形式的傅立叶系数做了几个有趣的观察,但不能给出一个证明。同时,作为拟模形的一个应用,给出了模群上尖点形的傅立叶系数对素数来说是“普通”的一个条件。这与超奇异多项式之间的联系可能会有些有趣。我们的研究也涉及到所谓的多重Zeta值。特别是,当我们仔细研究双Zeta值的双重洗牌关系时,我们自然会得到完全模群上的模形式的周期多项式。为了理解这种联系,我们定义和研究了双重艾森斯坦级数,并计算了它们的傅里叶系数。作为应用,我们找到了Ramanujan tau函数的傅里叶系数的几个公式,这些系数的权12尖点形式称为判别函数或Jacobi的Delta函数。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On extremal quasimodular forms
关于极值拟模形式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Terao;Y;Mizuno;T;Mizuno;T;Shindo;M;et. al.;M.Kaneko
- 通讯作者:M.Kaneko
Kaneko, Masanobu: "The Kappa function"Int.J.Math.. 14-9. 1003-1013 (2003)
Kaneko, Masanobu:“Kappa 函数”Int.J.Math.. 14-9。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Surjectivity of p-adic regulators on K2 of Tate curves
- DOI:10.1007/s00222-005-0494-4
- 发表时间:2005-02
- 期刊:
- 影响因子:3.1
- 作者:M. Asakura
- 通讯作者:M. Asakura
Thompson series and Ramanujan's identities
汤普森级数和拉马努金的身份
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Koike;Masao
- 通讯作者:Masao
Reshetikhin-Turaev invariants of Seifert 3-manifolds for classical simple Lie algebras
经典简单李代数的 Seifert 3 流形的 Reshetikhin-Turaev 不变量
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Takata;Toshie
- 通讯作者:Toshie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANEKO Masanobu其他文献
KANEKO Masanobu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANEKO Masanobu', 18)}}的其他基金
Multiple zeta values and functions
多个 zeta 值和函数
- 批准号:
16H06336 - 财政年份:2016
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Pursuing the dream of trinity of complex and real multiplications and the moonshine of the j-function by its novel extension
通过其新颖的扩展来追求复数与实数乘法三位一体的梦想以及j函数的月光
- 批准号:
15K13428 - 财政年份:2015
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Potential role of the elliptic modular j-function in the "Kronecker's dream of youth" for real quadratic fields
椭圆模 j 函数在实二次域“克罗内克青春梦想”中的潜在作用
- 批准号:
23654013 - 财政年份:2011
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on modular and quasimodular forms arising in various contexts in mathematics and physics
对数学和物理中各种背景下出现的模和拟模形式的研究
- 批准号:
19340009 - 财政年份:2007
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
STUDY OF MULTIPLE ZETA VALUES
多个 Zeta 值的研究
- 批准号:
10440010 - 财政年份:1998
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
Study of modular/quasimodular forms and multiple zeta values appearing in various aspects of mathematics and physics
研究数学和物理各个方面出现的模/拟模形式和多重 zeta 值
- 批准号:
23340010 - 财政年份:2011
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on modular and quasimodular forms arising in various contexts in mathematics and physics
对数学和物理中各种背景下出现的模和拟模形式的研究
- 批准号:
19340009 - 财政年份:2007
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




