Study of universal Grobner bases of zero-dimensional lattice ideals
零维晶格理想通用格罗布纳基的研究
基本信息
- 批准号:15340007
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The lattice ideal of dimension zero appears in the research of both pure mathematics and applied mathematics. The original purpose of the present research project was to establish the algebraic theory of universal Groebner bases of lattice ideal of dimension zero and to study of its theoretical effectivity to commutative algebra and algebraic geometry as well as its practical effectivity to integer programming, coding theory together with algebraic statistics. First, we investigated the universal Groebner basis of the lattice ideal of dimension zero arising from the toric ideal of a finite graph and succeeded in describing its structure in terms of the finite graph. Second, in the study of a problem on integer programming arising from a finite graph for which Gomory's relaxation can be applied, we developed the technique to decide the estimation of the computational complexity of finding an optimal solution by using combinatorics on finite graphs. Third, we achieved the study of finding an explicit expression of the corner polyhedron of a lattice ideal of dimension zero in terms of the Minkowski sum of a bounded convex polytope and a convex cone, and obtained some results on the combinatorics of the polyhedral structure of the corner polyhedron. Finally, we developed the algebraic study on the Markov basis of the contingency table in algebraic statistics and presented a statistic model arising from a complete multipartite graph. These research results will contribute to the development of the algebraic study of integer programming. In addition, we organized two international meetings related with computational commutative algebra and Groebner bases.
零维格理想在纯数学和应用数学的研究中都有出现。本课题的研究目的是建立零维格理想的通用格罗布纳基的代数理论,研究其对交换代数和代数几何的理论有效性,以及对整数规划、编码理论和代数统计的实际有效性。首先,我们研究了由有限图的环理想产生的零维格理想的普遍格罗布纳基,并成功地用有限图描述了它的结构。其次,在研究可应用Gomory松弛的有限图的整数规划问题时,我们开发了利用有限图上的组合学来确定寻找最优解的计算复杂度的估计的技术。第三,我们研究了用有界凸多面体与凸锥的Minkowski和来表示零维格理想的角多面体,并得到了角多面体多面体结构的组合学的一些结果。最后,我们对代数统计中列联表的马尔可夫基础进行了代数研究,提出了一个由完全多部图产生的统计模型。这些研究成果将有助于整数规划的代数研究的发展。此外,我们还组织了两次有关计算交换代数和格罗布纳基的国际会议。
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Grobner bases of certain zero-dimensional ideals arising in coding theory
编码理论中出现的某些零维理想的格罗布纳基础
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Takahara;Akiko.;Hidefumi Ohsugi;Hidefumi Ohsugi
- 通讯作者:Hidefumi Ohsugi
The h-Vector of a Gorenstein Toric Ring of a Compressed Polytope
- DOI:10.37236/1891
- 发表时间:2005-10
- 期刊:
- 影响因子:0
- 作者:Hidefumi Ohsugi;T. Hibi
- 通讯作者:Hidefumi Ohsugi;T. Hibi
Hidefumi Osugi: "Prestable ideals and Sagbi bases"Math.Scand.. (発表予定). (2004)
Hidefumi Osugi:“Prestable 理想和 Sagbi 基础”Math.Scand..(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIBI Takayuki其他文献
HIBI Takayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIBI Takayuki', 18)}}的其他基金
A challenge of solving the normality conjecture for cut polytopes affirmatively which yields a theoretical proof of the four color theorem
肯定地解决切割多胞形的正态猜想的挑战,从而产生四色定理的理论证明
- 批准号:
25610032 - 财政年份:2013
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on open problems arising from convex polytopes with strategies of the developed theory of Groebner bases
用格罗布纳基底发展理论的策略研究凸多胞体引起的开放问题
- 批准号:
22340008 - 财政年份:2010
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Study of theoretical aspects and practical aspect on Grobner Bases
Grobner基底的理论与实践研究
- 批准号:
18340008 - 财政年份:2006
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Foundation of computational Commutative algebra with a view toward combinatorics on convex polytopes
计算交换代数的基础,着眼于凸多面体的组合学
- 批准号:
09440013 - 财政年份:1997
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




