Various inbariants appearing in low-dimensional topology
低维拓扑中出现的各种不变量
基本信息
- 批准号:15340019
- 负责人:
- 金额:$ 7.94万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I am working on the volume conjecture for knots and its various generalizations. The volume conjecture states that a certain limit of the colored Jones polynomial of a knot would determine the volume of the complement of the knot. More precisely, we replace the paramaeter of the colored Jones polynomial of 'color' N with exp(2Pi^*I/V) and then consider the limit where N goes to the infinity. So far I generalized the volume conjecture as follows : If we replace the parameter with exp(a/N), change a variously, and take the limit, then we would have not only the volume of the knot complement but also the volume and the Chern-Simons invariant of the three-manifold obtained from the knot by Dehn surgery.In this academic year, I studied not only the limit but also several coefficients of the asymptotic expansion of the logarithm of the colored Jones polynomial with respect to large N. The volume conjecture is equivalent to saying that the coefficient of N would determine the volume and the Chern-Simons invariant.As a result of a joint work with S.Gukuv, we proposed the following new conjecture :1.The coefficient of log N would be determined by the dimension of the cohomoloty group twisted by a representation of the knot group at SL(2, C).2.The constant term would be determined by the Reidemeister torsion corresponding to a representation of the knot group at SL(2, C).The conjecture above gives a new aspect to the volume conjecture and its generalizations. Moreover, we have confirmed by computer caluculations that this conjecture is true for some knots.
我正在研究纽结的体积猜想及其各种推广。体积猜想指出,一个纽结的有色琼斯多项式的某个极限将决定该纽结的补数的体积。更准确地说,我们用exp(2pi^*i/V)来代替有色琼斯多项式N的参数,然后考虑N到无穷大的极限。到目前为止,我把体积猜想推广为:如果用exp(a/N)代替参数,变换a,取极限,那么我们不仅得到了结点补的体积,还得到了由Dehn手术得到的三维流形的体积和Chern-Simons不变量。在本学年,本文不仅研究了有色Jones多项式的对数关于大N的渐近展开式的极限,而且还研究了它的几个系数。体积猜想等价于说N的系数将决定体积和Chern-Simons不变量。作为与S.Gukuv共同工作的结果,我们提出了以下新的猜想:1.log N的系数将由SL(2,C)上的纽结群的表示所扭曲的上同调群的维来决定。2.常数项由SL(2,C)上的纽结群的表示所对应的Reidemister挠率来确定。C)上述猜想为体积猜想及其推广提供了一个新的方面。此外,我们还通过计算机计算证实了这一猜想对某些节点是正确的。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
リーマン面の退化族の諸相
黎曼一方堕落部落的各个方面
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Osaka;N.;小野 薫;M.Kaneko;Takashi Tsuboi;遠藤 久顕
- 通讯作者:遠藤 久顕
Some limits of the colored Jones polynomials of the figure-eight knot
八字结彩色琼斯多项式的一些极限
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Fumihiro Sato;Yumiko Hironaka;H.Murakami
- 通讯作者:H.Murakami
Tangent circle bundles admit positive open book decompositions along arbitrary links
正切圆束允许沿任意链接进行正开书分解
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Kitano;T.Morifuji;M.Takasawa;Akito Futaki;Akihiro Tsuchiya;M.Ishikawa
- 通讯作者:M.Ishikawa
M.Ishikawa: "On positive open book decompositions of 3-manifolds""Intelligence of Low Dimensional Topology", Shodo-Shima. 1-13 (2003)
M.Ishikawa:“关于 3 流形的正开书分解”“低维拓扑智能”,Shodo-Shima。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Positive open book decompositions of Stein fillable 3-manifolds along prescribed links
斯坦因可填充 3 流形沿规定链接的正开书分解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Ogata;Akira et al.;M.Ishikawa
- 通讯作者:M.Ishikawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MURAKAMI Hitoshi其他文献
病原性の異なるマツノザイセンチュウを接種したマツ切枝における通水阻害
接种不同致病性松树线虫对松枝断枝水流的抑制作用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
MURAKAMI Hitoshi;HACHIMURA Satoshi;TANABE Kosuke;ADACHI(NAKAJIMA)Haruyo;TSUDA Masato;WAKATSUKI Yoshio;SATO Ryuichiro;TAKAHASHI Kyoko;HOSONO Akira;KAMINOGAWA Shuichi;外岡遼・梅林利弘・福田健二 - 通讯作者:
外岡遼・梅林利弘・福田健二
MURAKAMI Hitoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MURAKAMI Hitoshi', 18)}}的其他基金
Volume Conjecture and its generalizations
体积猜想及其推广
- 批准号:
22540069 - 财政年份:2010
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
COUNTERMEASURES OF EVACUATION AND MITIGATION FOR NEXT NANKAI -EARTHQUAKE TSUNAMI IN SHIKOKU ISLAND
下次南海地震海啸四国岛的疏散和减灾对策
- 批准号:
13680545 - 财政年份:2001
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
低次元トポロジーの総合的研究
低维拓扑综合研究
- 批准号:
13440018 - 财政年份:2001
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
COUNTERMEASURES OF EVACUATION AND MITIGATION FOR NEXT NANKAI-EARTHQUAKE TSUNAMI IN SHIKOKU ISLAND
下次南海地震海啸四国岛的疏散和减灾对策
- 批准号:
10680446 - 财政年份:1998
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Restoration Technique for Eutrophied Sea Environment by using Circulation Function of Organic Matter in Ecosystem
利用生态系统有机质循环功能修复富营养化海洋环境技术
- 批准号:
10558094 - 财政年份:1998
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Re-examination of histrical tsunamis and tsunami risk assessment in Shikoku islnad
四国群岛历史海啸及海啸风险评估的再审查
- 批准号:
07680490 - 财政年份:1995
- 资助金额:
$ 7.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)