Mathematical analysis for inverse problems in mathematical scienes and establishment of numerical methods
数学领域反问题的数学分析和数值方法的建立
基本信息
- 批准号:15340027
- 负责人:
- 金额:$ 8.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In inverse problems, one has to determine physical properties of the interior of an object by available data on the boundary and to identify causes from results, and researches for various inverse problems become important in many fields such as mathematical sciences and industrie. The development of numerical methods as well as the mathemaical analyses for inverse problems become more requested, because the importance of the inverse problem is better recognized and computers and observation equipments are improved rapidly. It is more necessary for one to improve numerical methods which are free from the conventional manners for the forward problem. However even the mathematical researches for inverse problems on which such relevant numerical methods should be based, are not yet sufficiently done. One of important inverse problems in industry is for the risk management : one aims at the optimal control of a plant by means of suitable evaluation of the interior states of the plant, and has intrinsic instability. With physically acceptable a priori conditions, one can recover stability, which is called the conditional stability. Therefore one has to choose suitabl stabilizing methods, and should not apply conventional methods. For reasonable numerical performances, one has to choose numerical methods guaranteeing the accuracy which corresponds to the degree of conditional stability of the original inverse problem. Thus one must establish conditional stability results. In this research, we have developed numerical methods on the basis of exploited mathematical researches for inverse problems. Our mathematical results are remarkable by various mathematical knowledge such as complex analysis and partial differential equations. Moreover the link with the industry is deeper and one patent was applied.
在反问题中,人们必须通过边界上的可用数据来确定物体内部的物理性质,并从结果中找出原因,各种反问题的研究在数学科学和工业等许多领域变得重要。随着人们对反问题重要性的认识日益加深,计算机和观测设备的迅速改进,对反问题的数值方法和数学分析的发展提出了更高的要求。对于正问题,更有必要对摆脱传统方法的数值方法进行改进。然而,即使是作为相关数值方法基础的反问题的数学研究,也还不够充分。风险管理是工业上一个重要的逆问题,它通过对工厂内部状态的适当评价来达到对工厂的最优控制,具有内在的不稳定性。在物理上可接受的先验条件下,人们可以恢复稳定性,这被称为条件稳定性。因此,必须选择合适的稳定方法,而不应采用常规方法。为了获得合理的数值性能,必须选择与原反问题的条件稳定程度相对应的精度保证的数值方法。因此,必须建立条件稳定性结果。在此研究中,我们在反问题数学研究的基础上发展了数值方法。我们的数学成果是显著的各种数学知识,如复分析和偏微分方程。与行业联系更紧密,申请专利1项。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave
- DOI:10.1088/0266-5611/22/1/019
- 发表时间:2006-02
- 期刊:
- 影响因子:2.1
- 作者:J. Elschner;Masahiro Yamamoto
- 通讯作者:J. Elschner;Masahiro Yamamoto
Kim, Sungwhan, Yamamoto Masahiro: "Uniqueness in identification of the support of a source term in an elliptic equation"SIAM.J.Math.Anal. 35・No1. 148-159 (2003)
Kim, Sungwhan, Masahiro Yamamoto:“椭圆方程中源项支持度的唯一性”SIAM.J.Math.Anal 35・No1(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakamura Gen, Wang Jenn-Nan: "Unique continuation for an elasticity system with residual stress and its applications"SIAM J.Math.Anal. 35.No2. 304-317 (2003)
Nakamura Gen、Wang Jenn-Nan:“具有残余应力的弹性系统的独特延续及其应用”SIAM J.Math.Anal。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
An inverse source problem for Maxwell's equations in anisotropic media
- DOI:10.1080/00036810500047725
- 发表时间:2005-09
- 期刊:
- 影响因子:1.1
- 作者:Shumin Li;Masahiro Yamamoto
- 通讯作者:Shumin Li;Masahiro Yamamoto
Lipschitz stability of an inverse problem for an acoustic equation
- DOI:10.1080/00036810500474788
- 发表时间:2006-05
- 期刊:
- 影响因子:1.1
- 作者:M. Klibanov;Masahiro Yamamoto
- 通讯作者:M. Klibanov;Masahiro Yamamoto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAMOTO Masahiro其他文献
Immune evasion mechanisms of the zoonotic protozoan parasite Toxoplasma gondii in mammalian hosts.
哺乳动物宿主中人畜共患原生动物寄生虫弓形虫的免疫逃避机制。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
BANDO Hironori;FUKUDA Yasuhiro;YAMAMOTO Masahiro;KATO Kentaro - 通讯作者:
KATO Kentaro
YAMAMOTO Masahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAMOTO Masahiro', 18)}}的其他基金
An analisys on the division of roles between substantive and "procedural" review of the legislative discretion.
立法自由裁量权实质审查与“程序”审查的角色分工分析
- 批准号:
18K12633 - 财政年份:2018
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Pathogenic and genetic analysis of Toxoplasma by Japan, China and South Korea
日本、中国、韩国弓形虫病原及遗传分析
- 批准号:
18KK0226 - 财政年份:2018
- 资助金额:
$ 8.9万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
A Study in the Organizational Process of Capital Investment and M&A
资本投资与管理的组织过程研究
- 批准号:
17K04074 - 财政年份:2017
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reproduction of prebiotic metabolic pathways with deep-sea hydrothermal electricity
利用深海热液电再现益生元代谢途径
- 批准号:
16K05625 - 财政年份:2016
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research on vacuum gap insulation for ultra-high voltage devices
特高压器件真空间隙绝缘基础研究
- 批准号:
16K05385 - 财政年份:2016
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deep-sea hydrothermal electricity elucidates origin of life: Proposal of Electro-Iron-Sulfur World theory
深海热液电阐明生命起源:电铁硫世界理论的提出
- 批准号:
26610188 - 财政年份:2014
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of the in vitro maintenance system for undifferentiated stem cells using Toxoplasma ROP16
利用弓形虫 ROP16 开发未分化干细胞体外维持系统
- 批准号:
25670201 - 财政年份:2013
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
'Environmental Electric Ecosystem', a novel biomass production system
新型生物质生产系统“环境电力生态系统”
- 批准号:
23760797 - 财政年份:2011
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mathematical studies for diffusion of contaminants
污染物扩散的数学研究
- 批准号:
23654030 - 财政年份:2011
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation of novel innate immune system by analysis of host-parasite interaction
通过分析宿主-寄生虫相互作用阐明新型先天免疫系统
- 批准号:
23689029 - 财政年份:2011
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
相似海外基金
ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems
ARC 细胞系统数学分析卓越中心
- 批准号:
CE230100001 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
ARC Centres of Excellence
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Research Grant
Mathematical analysis of the steady flow of a viscous fluid depending on topological properties of the domain
根据域的拓扑特性对粘性流体的稳定流动进行数学分析
- 批准号:
22KJ2953 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
- 批准号:
2306254 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Mathematical modeling and mathematical analysis of bacterial colony patterns
细菌菌落模式的数学建模和数学分析
- 批准号:
23K03225 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of time periodic Schroedinger equations
时间周期薛定谔方程的数学分析
- 批准号:
23K03187 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Adversarial Robustness through the Lens of Mathematical Analysis and Geometry
职业:从数学分析和几何的角度看对抗鲁棒性
- 批准号:
2236447 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Continuing Grant
Mathematical analysis for the compressible viscous rotating flow
可压缩粘性旋转流的数学分析
- 批准号:
23K19011 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
REU Site: Mathematical Analysis and Applications
REU 网站:数学分析与应用
- 批准号:
2243808 - 财政年份:2023
- 资助金额:
$ 8.9万 - 项目类别:
Standard Grant














{{item.name}}会员




