Statistical Estimation Theory for Quantum Channels

量子通道的统计估计理论

基本信息

  • 批准号:
    15340031
  • 负责人:
  • 金额:
    $ 5.57万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

This research addresses the problem of estimating an unknown quantum channel, based on noncommutative statistics and quantum information geometry. Main results are summarized as follows :1. Estimation theory for generalized Pauli channels, generalized amplitude-damping channel, SU(d) channel, etc. :These channels are the standard ones often used in quantum information theory. Based on noncommutative statistics, quantum information geometry, representation theory, as well as methods of experimental mathematics on a computer, we have obtained the optimal estimation scheme for each of those quantum channels. We also have clarified the underlining differential geometrical mechanism, in particular, the dilation/collapse of quantum statistical manifolds of output quantum states with respect to the quantum entanglement and the degree of extensions, behind the optimality of those estimation schemes.2. Asymptotic theory of adaptive estimation schemes based on the locally unbiased estimators :The notion of locally unbiased estimators, advocated first by Holevo, has been the target of criticism because the optimal estimation scheme depends on the unknown parameter itself. In order to surmount this difficulty, Nagaoka advocated an adaptive estimation scheme which make use of maximal likelihood estimators as a tentative estimator. However, due to the mathematical difficulty, the analysis of its asymptotic property has been left untouched. In this research, we have proved the strong consistency and the asymptotic efficiency of Nagaoka's adaptive estimation scheme based on the martingale theory.
本文基于非对易统计和量子信息几何,研究了未知量子信道的估计问题。主要研究结果如下:1.广义Pauli通道、广义振幅阻尼通道、SU(d)通道等的估计理论:这些通道是量子信息论中常用的标准通道。基于非对易统计、量子信息几何、表示论以及计算机实验数学方法,我们得到了每个量子信道的最优估计方案。我们还阐明了这些估计方案的最优性背后的微分几何机制,特别是输出量子态的量子统计流形关于量子纠缠和扩展程度的膨胀/坍缩.基于局部无偏估计的自适应估计方案的渐近理论:Holevo首先提出的局部无偏估计的概念一直是批评的目标,因为最佳估计方案取决于未知参数本身。为了克服这一困难,Nagaoka提出了一种自适应估计方案,该方案利用极大似然估计作为试探性估计。然而,由于数学上的困难,它的渐近性质的分析一直没有触及。本文利用鞅理论证明了Nagaoka自适应估计方案的强相合性和渐近有效性。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of a generalized amplitude-damping channel
  • DOI:
    10.1103/physreva.70.012317
  • 发表时间:
    2004-07-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Fujiwara, A
  • 通讯作者:
    Fujiwara, A
Statistical estimation of a quantum operation
量子操作的统计估计
Quantum parameter estimation of a generalized Pauli channel
A.Fujiwara, H.Imai: "Quantum parameter estimation of a generalized Pauli channel"Journal of Physics A : Mathematical and General. vol.36. 8093-8103 (2003)
A.Fujiwara、H.Imai:“广义泡利通道的量子参数估计”物理学杂志 A:数学与一般。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Entanglement-assisted estimation of quantum channels
量子通道的纠缠辅助估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIWARA Akio其他文献

The Effect of Forest Management of Secondary Coniferous forests on User's Landscape Appreciation and Psychological Restorativeness.
次生针叶林森林经营对使用者景观欣赏和心理恢复的影响。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TAKAYAMA Norimasa;SAITO Haruo;FUJIWARA Akio;HORIUCHI Masahiro
  • 通讯作者:
    HORIUCHI Masahiro

FUJIWARA Akio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJIWARA Akio', 18)}}的其他基金

Information theoretic study of empirical probability
经验概率的信息论研究
  • 批准号:
    22654015
  • 财政年份:
    2010
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Quantum information geometrical methods in noncommutative statistics
非交换统计中的量子信息几何方法
  • 批准号:
    18340028
  • 财政年份:
    2006
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Operational methods in quantum information theory
量子信息论中的运算方法
  • 批准号:
    11640115
  • 财政年份:
    1999
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了