Studies on a new class of hyperbolic systems

一类新型双曲系统的研究

基本信息

  • 批准号:
    15340044
  • 负责人:
  • 金额:
    $ 6.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

We have obtained a definitive result about the classification of hyperbolic double characteristics.A hyperbolic double characteristic is called non effectively hyperbolic characteristic if the Hamilton map at the reference point admits only pure imaginary eigenvalues. A remaining fundamental question was whether the Cauchy problem around non effectively hyperbolic characteristic is C-infty well-posed?We classify hyperbolic double characteristics whether the behavior of null bicharacteristics around the reference double characteristic is stable with respect to the doubly characteristic manifold, that is whether there exists a null bicharacteristic with a limit point in the doubly characteristic manifold. We have obtained the following results:If the behavior of null bicharacteristics around the reference double characteristic then the principal symbol is elementary decomposable and the Cauchy problem is C-infty well-posed. On the other hand, if the behavior of null bicharacteristic is unstable then the principal symbol is not elementary decomposable and the Cauchy problem is not C-infty well-posed. We obtained more detailed results. In this unstable case the Cauchy problem is Gevrey 5 well-posed and this index 5 is optimal in the following sense; if there is a null bicharacteristic with a limit point in the doubly characteristic manifold then the Cauchy problem is not Gevrey s well-posed for any s>5.Based on the above results, we obtained the following result : assume that the codimension of the doubly characteristic manifold is 3 and the all eigenvalues of the Hamilton map remain to be pure imaginary then the Cauchy problem is Gevrey 5 well-posed.
得到了双曲重特征线分类的一个确定性结果:如果双曲重特征线在参考点处的汉密尔顿映射只存在纯虚特征值,则称其为非有效双曲特征线.剩下的一个基本问题是围绕非有效双曲特征线的柯西问题是否是C-无限适定的?我们对双曲重特征线进行了分类,判定了双曲重特征线在参考重特征线周围的零特征线的行为是否相对于双特征线流形稳定,即双特征线流形中是否存在一个具有极限点的零特征线.我们得到了如下结果:如果零双特征线在参考双特征线周围的行为,则主符号是初等可分解的,柯西问题是C-无限适定的。另一方面,如果零双特征线的行为是不稳定的,那么主符号不是初等可分解的,柯西问题不是C-无限适定的。我们得到了更详细的结果。在这种不稳定情形下,Cauchy问题是Gevrey 5适定的,并且指数5在以下意义下是最优的:如果在双特征流形中存在一个具有极限点的零双特征线,则Cauchy问题对任何s> 5都不是Gevrey适定的。假设双特征流形的余维数为3,且汉密尔顿映射的所有特征值保持纯虚,则Cauchy问题是Gevrey 5适定的.

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On finitely degenerate hyperbolic operators of second order
关于二阶有限简并双曲算子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Nishitani;F.Colombini
  • 通讯作者:
    F.Colombini
T.Nishitani, M.Oi Flaviano: "On the Cauchy problem for a weakly hyperbolic operator ; an intermediate case between effective hyperbolicity and Levi conditions"Partial Differential Equations and Mathematical Physics. 73-83 (2003)
T.Nishitani,M.Oi Flaviano:“关于弱双曲算子的柯西问题;有效双曲性和列维条件之间的中间情况”偏微分方程和数学物理。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On the Cauchy problem for Dt2–Dxa(t,x)nDx
关于 Dt2–Dxa(t,x)nDx 的柯西问题
An example of the Cauchy problem well posed in any Gevrey class
在任何 Gevrey 类中均适定的柯西问题的示例
Smoothly symmetrizable complex systems and the real reduced dimension
平滑对称复杂系统和真实降维
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Nishitani;J.Vaillant
  • 通讯作者:
    J.Vaillant
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHITANI Tatsuo其他文献

NISHITANI Tatsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHITANI Tatsuo', 18)}}的其他基金

Hyperbolic operators with double characteristics, Hamilton map and Hamilton flow
具有双特征的双曲算子、Hamilton映射和Hamilton流
  • 批准号:
    23540199
  • 财政年份:
    2011
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phase Space Analysis of Partial Differential Equations
偏微分方程的相空间分析
  • 批准号:
    19204013
  • 财政年份:
    2007
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Theory of hyperloobic systems
高循环系统理论
  • 批准号:
    11440046
  • 财政年份:
    1999
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on symmetric positive systems
对称正系统研究
  • 批准号:
    09440059
  • 财政年份:
    1997
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Symmetric systems and strongly hyperbolic systems
对称系统和强双曲系统
  • 批准号:
    07454027
  • 财政年份:
    1995
  • 资助金额:
    $ 6.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了