Hyperbolic operators with double characteristics, Hamilton map and Hamilton flow
具有双特征的双曲算子、Hamilton映射和Hamilton流
基本信息
- 批准号:23540199
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much progress has been achieved on the well-posedness of the Cauchy problem for linear hyperbolic operators with double characteristics. In particular in several transition cases from effectively hyperbolic to noneffectively hyperbolic, the relations between the spectral properties of the Hamilton map and the well-posedness conditions are clarified. I have published many such obtained results and also presented such results in several international meetings.
具有双特征的线性双曲算子的柯西问题的适定性已经取得了很大进展。特别是在从有效双曲到无效双曲的几种过渡情况下,汉密尔顿图的谱特性与适定条件之间的关系得到了澄清。我已经发表了许多这样的成果,也在一些国际会议上展示了这样的成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local and microlocal Cauchy problem for noneffectively hyperbolic operators
非有效双曲算子的局部和微局部柯西问题
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Fujii;Jun Ichi; Pecaric;Josip; Seo;Yuki;T.Nishitani
- 通讯作者:T.Nishitani
Note on lower bounds of energy growth for solutions to wave equations
关于波动方程解的能量增长下限的注释
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:S.Doi;T.Nishitani;H.Ueda
- 通讯作者:H.Ueda
A remark on the local and microlocal Cauchy problem for noneffectively hyperbolic operators
关于非有效双曲算子的局部和微局部柯西问题的评论
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:T.Nishitani
- 通讯作者:T.Nishitani
On the Cauchy problem for noneffectively hyperbolic operators, a transition case
关于非有效双曲算子的柯西问题,一个转换案例
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Moslehian;Mohammad Sal; Fujii;Jun Ichi;T.Nishitani
- 通讯作者:T.Nishitani
Some well-posed Cauchy problem for second order hyperbolic equations
二阶双曲方程的一些适定柯西问题
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:F.Colombini;T.Nishitani;N.Orru;L.Pernazza
- 通讯作者:L.Pernazza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHITANI Tatsuo其他文献
NISHITANI Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHITANI Tatsuo', 18)}}的其他基金
Phase Space Analysis of Partial Differential Equations
偏微分方程的相空间分析
- 批准号:
19204013 - 财政年份:2007
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on a new class of hyperbolic systems
一类新型双曲系统的研究
- 批准号:
15340044 - 财政年份:2003
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of hyperloobic systems
高循环系统理论
- 批准号:
11440046 - 财政年份:1999
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on symmetric positive systems
对称正系统研究
- 批准号:
09440059 - 财政年份:1997
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symmetric systems and strongly hyperbolic systems
对称系统和强双曲系统
- 批准号:
07454027 - 财政年份:1995
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Stability of entropy solutions to the Cauchy problem for conservation laws
守恒定律柯西问题熵解的稳定性
- 批准号:
22K03349 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
- 批准号:
21K03324 - 财政年份:2021
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cauchy problem for differential operators with triple effectively hyperbolic characteristics
具有三有效双曲特性的微分算子柯西问题
- 批准号:
20K03679 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for the Cauchy problem for nonlinear Klein-Gordon equations in homogeneous and isotropic spaces
均匀各向同性空间中非线性Klein-Gordon方程的柯西问题研究
- 批准号:
17KK0082 - 财政年份:2018
- 资助金额:
$ 3.24万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Characterization of hyperbolic operators with the coefficients of the principal part depending only on the time variable for which the Cauchy problem is well-posed
双曲算子的特征,其主要部分的系数仅取决于柯西问题适定的时间变量
- 批准号:
16K05222 - 财政年份:2016
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Uniqueness, non-uniqueness and conditional stability ofsolutions to the Cauchy problem for degenerate ellipticdifferential equations with low-regular coefficients
低正则系数简并椭圆微分方程柯西问题解的唯一性、非唯一性和条件稳定性
- 批准号:
278164640 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Research Grants
Cauchy problem for nonlinear dispersive equations and integrable systems
非线性色散方程和可积系统的柯西问题
- 批准号:
26800070 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cauchy problem of nonlinear dispersive equations
非线性色散方程柯西问题
- 批准号:
25400158 - 财政年份:2013
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterization of hyperbolic operators for which the Cauchy problem is well-posed in the framework of infinitely differentiable functions
柯西问题在无限可微函数框架中适定的双曲算子的表征
- 批准号:
23540185 - 财政年份:2011
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)