Research on Complex Dynamics

复杂动力学研究

基本信息

  • 批准号:
    15340055
  • 负责人:
  • 金额:
    $ 9.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

Ueda studied the Fatou coordinate (solution to Abel's equation) for parabolic fixed points and the linearization function (solution to Schroeder equation) for attracting fixed points for complex analytic functions of one variable. He showed that The Fatou coordinate can be obtained as an appropriate limit of the linearization functions for the sequence of maps whose multiplier tends to 1. He also studied holomorphic mappings on complex projective spaces and characterized the condition for the analytic continuation of Fatou maps, which is a generalized notion of Fatou components.Tsujii studied using functional analytic methods the ergodic theoretical properties of (partially) hyperbolic dynamical systems. For certain two dimensional partially hyperbolic systems, he showed under a genericity assumption that there exist a finite number of measure theoretic attractors and their basins coincide with the entire phase space modulo a set of Lebesgue measure zero. He also studied the dynamical … More zeta function for hyperbolic dynamical systems and its analytic continuation.In a joint work with Shishikura, Inou studied the parabolic renormalization of one dimensional complex dynamical systems. They showed the existence of an invariant space of function for the parabolic renormalization, and this implied that its perturbation leads to the hyperbolicity of the near-parabolic renormalization for irrationally indifferent fixed points. As an application they obtained the universal behavior of the multipliers of the small periodic cycles around irrationally indifferent fixed points. Buff and Cheritat also used the above result as a key step to show the existence of a quadratic polynomial with Julia set of positive Lebesgue measure. This became a counter-example to a long standing problem which is an analogy of Ahlfors conjecture for rational maps.In a joint work with Shishikura, Kisaka developed the technique of quasiconformal surgery to show the existence of doubly connected wandering domains for transcendental entire functions.Ushiki visualized higher dimensional Julia sets. Less
上田研究了Fatou坐标(解决阿贝尔方程)抛物不动点和线性化函数(解决施罗德方程)吸引不动点复杂的解析函数的一个变量。他表明,法图坐标可以获得作为一个适当的限制线性化功能的序列地图的乘数趋于1。他还研究了全纯映射复杂的射影空间和特点的条件分析继续Fatou地图,这是一个广义的概念Fatou组件。Tsujii研究使用功能分析方法的遍历理论性质的(部分)双曲动力系统。对于某些二维部分双曲系统,他表明根据一般性假设,存在有限数量的措施理论吸引子和他们的盆地符合整个相空间模一套勒贝格措施零。他还研究了 ...更多信息 zeta函数的双曲动力系统及其解析延拓。在一个联合工作与志仓,猪研究了抛物重整化的一维复杂的动力系统。他们证明了抛物重整化的不变函数空间的存在性,这意味着它的扰动导致了非理性中立不动点的近抛物重整化的双曲性。作为应用,他们得到了小周期圈的乘子在无理不动点周围的普适性态。Buff和Cheritat也将上述结果作为关键步骤,证明了具有正Lebesgue测度的Julia集的二次多项式的存在性。这成为一个反例长期存在的问题,这是一个类比的阿尔福斯猜想合理的地图。在联合工作与志仓,木坂开发的技术quasiconformal手术,以显示存在的双重连接游荡域的超越整个职能。Ushiki可视化高维朱莉娅集。少

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weakly expanding skew product of quadratic maps
二次映射的弱展开斜积
Chaotic composition operators on the classical nolomorphic spaces
经典同纯空间上的混沌组合算子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Morita;H.Ninomiya;M.Taniguchi
  • 通讯作者:
    M.Taniguchi
Fixed points of polynomial automorphisms of C^n
C^n 多项式自同构的不动点
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michihiko Fujii;Masaaki Ue;Masaaki Ue;Michihiko Fujii;Masaaki Ue;Masaaki Ue;Masaaki Ue;Masaaki Ue;Michihiko Fujii;Tetsuo Ueda
  • 通讯作者:
    Tetsuo Ueda
On the action of the mapping class group for Riemann surfaces of infinite type
无限型黎曼曲面映射类群的作用
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E.Fujikawa;H.Shiga;M.Taniguchi
  • 通讯作者:
    M.Taniguchi
Briend, Cautat, Shishikura: "Linearity of the exceptional set for maps of P^k(C)"Math.Annalen. (掲載予定). (2004)
Briend、Cautat、Shishikura:“P^k(C) 映射的异常集的线性”Math.Annalen(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEDA Tetsuo其他文献

UEDA Tetsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEDA Tetsuo', 18)}}的其他基金

Fixed points and critical points in higher dimensional complex dynamics
高维复杂动力学中的不动点和临界点
  • 批准号:
    21540176
  • 财政年份:
    2009
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solving Geometrical Puzzles by the True Slime Mold and Its Intracellular Computational Algorithm
用真正的粘菌及其胞内计算算法解决几何难题
  • 批准号:
    15300098
  • 财政年份:
    2003
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Emergence of intelligence by cell shape changes in a giant amoeboid cell of the true slime mold Physarum
真正的粘菌绒泡菌的巨型变形虫细胞通过细胞形状的变化而产生智慧
  • 批准号:
    13650266
  • 财政年份:
    2001
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cellular Intelligence by Nonlinear Dynamics in a Slime Mold.
粘菌中非线性动力学的细胞智能。
  • 批准号:
    11837001
  • 财政年份:
    1999
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic transformations of complex manifolds
复流形的解析变换
  • 批准号:
    04640154
  • 财政年份:
    1992
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

JOSEPHSONJUNCTION的动力学与紊动(CHAOS)现象
  • 批准号:
    18670411
  • 批准年份:
    1986
  • 资助金额:
    0.55 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Technologies for Prevention of Damage Caused by Jellyfish in Set-Net Using Fish Behavior Analysis Based on Chaos and Fractal
基于混沌和分形的鱼类行为分析预防网中水母危害技术的开发
  • 批准号:
    22560409
  • 财政年份:
    2010
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fractal geometry and chaos theory applied to powder technology
分形几何和混沌理论在粉末技术中的应用
  • 批准号:
    5800-1993
  • 财政年份:
    1997
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Chaos and fractal dimension in time series
时间序列中的混沌和分形维数
  • 批准号:
    9154-1994
  • 财政年份:
    1996
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal geometry and chaos theory applied to powder technology
分形几何和混沌理论在粉末技术中的应用
  • 批准号:
    5800-1993
  • 财政年份:
    1996
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
STUDY ON EVALUATION OF ULTRA-PRECISION CUT SURFACE AND PERFORMANCE BY FRACTAL AND CHAOS CHARACTERIZATION
分形和混沌表征超精密切割表面及性能评价研究
  • 批准号:
    08650178
  • 财政年份:
    1996
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chaos and fractal dimension in time series
时间序列中的混沌和分形维数
  • 批准号:
    9154-1994
  • 财政年份:
    1995
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal geometry and chaos theory applied to powder technology
分形几何和混沌理论在粉末技术中的应用
  • 批准号:
    5800-1993
  • 财政年份:
    1995
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal geometry and chaos theory applied to powder technology
分形几何和混沌理论在粉末技术中的应用
  • 批准号:
    5800-1993
  • 财政年份:
    1994
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Chaos and fractal dimension in time series
时间序列中的混沌和分形维数
  • 批准号:
    9154-1994
  • 财政年份:
    1994
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
Fractal geometry and chaos theory applied to powder technology
分形几何和混沌理论在粉末技术中的应用
  • 批准号:
    5800-1993
  • 财政年份:
    1993
  • 资助金额:
    $ 9.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了