Solving Geometrical Puzzles by the True Slime Mold and Its Intracellular Computational Algorithm
用真正的粘菌及其胞内计算算法解决几何难题
基本信息
- 批准号:15300098
- 负责人:
- 金额:$ 10.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With use of the single giant amoeboid cell of the Physarum plasmodium, we performed unconventional experiments concerning cellular intelligence and also constructed mathematical models based on nonlinear intracellular dynamics for clarifying computational algorithm. (1) The organism solved such geometrical puzzles as maze problems, Steiner problems, Fermart problems. (2) The formation of vein networks was governed by the trade-off among minimum path-length, assurance for not-breaking apart, and minimum danger, etc. (3) Mathematical models were constructed based on a coupled oscillators where the conservation of mass and the regional difference of the visco-elastic properties were taken into account. The model simulated synchronous oscillation patterns observed in the Physarum. (4) A mathematical model was constructed by taking into adaptive mechanism for the formation of veins. The model simulated maze solving by the Physarum, Steiner problems and Fermart problems.
利用绒泡菌(Physarum plasmodium)的单个巨大变形虫细胞,进行了有关细胞智能的非常规实验,并构建了基于非线性细胞内动力学的数学模型,阐明了计算算法。(1)有机体解决了诸如迷宫问题、斯坦纳问题、费马问题等几何难题。(2)脉网的形成受最小路径长度、保证不破裂和最小危险性等因素的权衡控制。(3)建立了基于耦合振子的数学模型,该模型考虑了质量守恒和粘弹性的区域差异。该模型模拟了在绒泡菌中观察到的同步振荡模式。(4)考虑矿脉形成的适应机制,建立了数学模型。该模型模拟了绒泡菌、Steiner问题和Fermart问题的迷宫求解过程。
项目成果
期刊论文数量(57)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold
- DOI:10.1007/s00285-006-0067-1
- 发表时间:2007-01
- 期刊:
- 影响因子:1.9
- 作者:Hiroyasu Yamada;Toshiyuki Nakagaki;Ruth E Baker;P. K. Maini
- 通讯作者:Hiroyasu Yamada;Toshiyuki Nakagaki;Ruth E Baker;P. K. Maini
Super water-repellent surfaces with fractal structures and their potential application to biological studies
- DOI:10.1016/j.colsurfa.2005.10.083
- 发表时间:2006-08
- 期刊:
- 影响因子:0
- 作者:H. Yan;H. Shiga;E. Ito;T. Nakagaki;S. Takagi;T. Ueda;K. Tsujii
- 通讯作者:H. Yan;H. Shiga;E. Ito;T. Nakagaki;S. Takagi;T. Ueda;K. Tsujii
Mathematical model for adaptive transport network in path finding by true slime mold
真粘菌寻路的自适应传输网络数学模型
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Atsushi Tero;Ryo Kobayashi and Toshiyuki Nakagaki
- 通讯作者:Ryo Kobayashi and Toshiyuki Nakagaki
A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds
- DOI:10.1016/j.physd.2005.01.010
- 发表时间:2005-06
- 期刊:
- 影响因子:0
- 作者:A. Tero;R. Kobayashi;T. Nakagaki
- 通讯作者:A. Tero;R. Kobayashi;T. Nakagaki
あるアメーバ様生物の行動に見る賢さ-粘菌変形体のリズム性運動と編目体形-
从类阿米巴生物的行为中看到的智慧——粘菌变形体的节律运动和网状体形状——
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tero;A.;Kobayashi;R.;Nakagaki;T;上田哲男;中垣 俊之
- 通讯作者:中垣 俊之
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEDA Tetsuo其他文献
UEDA Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEDA Tetsuo', 18)}}的其他基金
Fixed points and critical points in higher dimensional complex dynamics
高维复杂动力学中的不动点和临界点
- 批准号:
21540176 - 财政年份:2009
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Complex Dynamics
复杂动力学研究
- 批准号:
15340055 - 财政年份:2003
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Emergence of intelligence by cell shape changes in a giant amoeboid cell of the true slime mold Physarum
真正的粘菌绒泡菌的巨型变形虫细胞通过细胞形状的变化而产生智慧
- 批准号:
13650266 - 财政年份:2001
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cellular Intelligence by Nonlinear Dynamics in a Slime Mold.
粘菌中非线性动力学的细胞智能。
- 批准号:
11837001 - 财政年份:1999
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic transformations of complex manifolds
复流形的解析变换
- 批准号:
04640154 - 财政年份:1992
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Experimental modal analysis using network system of coupled oscillators of structure by self-excited vibration caused by mode coupling
模态耦合引起的结构自激振动耦合振子网络系统实验模态分析
- 批准号:
23K03748 - 财政年份:2023
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Autonomous walkers and explorers: collective dynamics of coupled oscillators for autonomous robot locomotion and coordination
自主步行者和探索者:用于自主机器人运动和协调的耦合振荡器的集体动力学
- 批准号:
RGPIN-2022-03921 - 财政年份:2022
- 资助金额:
$ 10.62万 - 项目类别:
Discovery Grants Program - Individual
Many-body synchronization and non-equilibrium phase transition in frustrated coupled-oscillators
受挫耦合振荡器中的多体同步和非平衡相变
- 批准号:
21K03396 - 财政年份:2021
- 资助金额:
$ 10.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GOALI/Collaborative Research: Nonlinear Energy Dynamics of Aerodynamically Coupled Oscillators
GOALI/合作研究:空气动力耦合振荡器的非线性能量动力学
- 批准号:
2131600 - 财政年份:2021
- 资助金额:
$ 10.62万 - 项目类别:
Continuing Grant
GOALI/Collaborative Research: Nonlinear Energy Dynamics of Aerodynamically Coupled Oscillators
GOALI/合作研究:空气动力耦合振荡器的非线性能量动力学
- 批准号:
2131594 - 财政年份:2021
- 资助金额:
$ 10.62万 - 项目类别:
Continuing Grant
Collaborative Research: Nonsmooth Maps, Coupled Oscillators and Seasonal Variation of Sleep and Circadian Rhythms
合作研究:非平滑图、耦合振荡器以及睡眠和昼夜节律的季节变化
- 批准号:
1853511 - 财政年份:2019
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Collaborative Research: Nonsmooth Maps, Coupled Oscillators and Seasonal Variation of Sleep and Circadian Rhythms
合作研究:非平滑图、耦合振荡器以及睡眠和昼夜节律的季节变化
- 批准号:
1853506 - 财政年份:2019
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
RUI: Musical Acoustics: Coupled Oscillators, Mandolin Bridges, and Holographic Interferometry
RUI:音乐声学:耦合振荡器、曼陀林琴桥和全息干涉测量
- 批准号:
1707978 - 财政年份:2017
- 资助金额:
$ 10.62万 - 项目类别:
Continuing Grant
SHF: Small: Ferroelectric Transistor based Coupled Oscillators for Non-Boolean Computing
SHF:小型:用于非布尔计算的基于铁电晶体管的耦合振荡器
- 批准号:
1717999 - 财政年份:2017
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
SHF: Small: Ferroelectric Transistor based Coupled Oscillators for Non-Boolean Computing
SHF:小型:用于非布尔计算的基于铁电晶体管的耦合振荡器
- 批准号:
1814756 - 财政年份:2017
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant