Control of Nonholonomic Systems Under the Gravity Field

重力场下非完整系统的控制

基本信息

  • 批准号:
    15360223
  • 负责人:
  • 金额:
    $ 5.12万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

In this research, we investigate the following systems for nonholonomic system under the gravity field.1. Continuous Hopping Motion Control of One Linear Actuator RobotThis robot has mechanics to be able to realize continuous hopping motion on vertical plane by one linear actuator : We showed that continuous hopping is possible to build servo system by regarding one linear actuator robot as a discrete system. Also we constructed the hopping robot which has a pneumatic cylinder and a small air tank, and succeeded 14 times hopping by this robot.2. Enduring Rotary Motion Control of Devil StickWe showed that enduring rotary motion of devil stick is realized by zeroing output functions which are obtained through observation of human operations. Also we constructed experimental devil stick system by using a industrial manipulator in substitution for a human arm, and succeeded 15 times rotary motion of the stick.3. Swing Up Control on the Horizontal Bar with ComplianceWe proposed the model of an acrobot on the horizontal bar with compliance, and derived the control strategy to swing up the acrobot more rapidly by efficient use of that compliance. Also we developed experimental system which uses linear springs to simulate the compliance, and confirmed effective swing up motion is achieved.4. Nonlinear Control of Inverted Pendulum System with Up-down MotionWe analyzed the performance of the stabilization of a inverted pendulum by using not only horizontal motion but also vertical motion. By expressing the inverted pendulum model which moves on vertical plane freely as bilinear system, we derived the nonlinear H infinity control law so as to make use of vertical motion appropriately.
在本研究中,我们针对重力场作用下的非完整系统,研究了以下几个系统.单直线驱动器机器人连续跳跃运动控制该机器人具有通过一个直线驱动器实现垂直平面上连续跳跃运动的机制:我们证明了将一个直线驱动器机器人视为离散系统来建立连续跳跃伺服系统是可能的。并研制了一种带有气缸和小型储气罐的跳跃机器人,成功地实现了14次跳跃.魔鬼棒的持久旋转运动控制我们证明了魔鬼棒的持久旋转运动是通过对人的操作进行观察而获得的输出函数归零来实现的。用工业机械手代替人的手臂,构建了实验性的魔鬼棒系统,并成功实现了15次旋转.单杠上具有柔顺性的摆动控制提出了单杠上具有柔顺性的杂技机器人模型,并推导出了有效利用柔顺性使杂技机器人快速摆动的控制策略。并开发了实验系统,采用线性弹簧模拟柔度,验证了有效的摆起运动.具有升降运动的倒立摆系统的非线性控制我们分析了倒立摆在水平运动和垂直运动情况下的镇定性能。通过将在竖直平面上自由运动的倒立摆模型表示为双线性系统,导出了非线性H ∞控制律,以合理利用竖直运动。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Fuzzy Control of One Linear Actuator Hopping Robot
一种线性执行器跳跃机器人的自适应模糊控制
Analysis of Compliance Effect for Swing Up Control
上摆控制顺应效果分析
Son Kuswadi: "Adaptive Fuzzy Control of One Linear Actuator Hopping Robot"Journal of Advanced Computational Intelligence and Intelligent Informatics. 7・2. 92-100 (2003)
Son Kuswadi:“一个线性致动器跳跃机器人的自适应模糊控制”高级计算智能和智能信息学杂志7・2(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Feedback Control of Enduring Rotary Motion of Devil Stick
魔鬼棒持久旋转运动的反馈控制
Yasuyuki Kawaida: "Feedback Control of Enduring Rotary Motion of Devil Stick"Proc.of the 42nd IEEE Conference on Decision and Control. 3396-3401 (2003)
Yasuyuki Kawaida:“Devil Stick 持久旋转运动的反馈控制”第 42 届 IEEE 决策与控制会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMPEI Mitsuji其他文献

SAMPEI Mitsuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMPEI Mitsuji', 18)}}的其他基金

Controllability Structure Analysis of Underactuated Systems under Gravity Field and its Control
重力场欠驱动系统可控性结构分析及其控制
  • 批准号:
    16H04383
  • 财政年份:
    2016
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis and Control of Underactuated Systems based on RelativeDegree Structure
基于相对度结构的欠驱动系统分析与控制
  • 批准号:
    22360169
  • 财政年份:
    2010
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Zero Dynamics Control for Human Dexterous Motions
人类灵巧运动的零动态控制
  • 批准号:
    18360201
  • 财政年份:
    2006
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了