Study on Inspection System of Quality for Fruit and Vegetables using Spectral Imaging(UV-NIR).

光谱成像(UV-NIR)果蔬品质检测系统研究。

基本信息

  • 批准号:
    15380175
  • 负责人:
  • 金额:
    $ 5.63万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Consumers are demanding for higher quality and better safety of agricultural produce. While external food quality inspection is now more commonly done during post-harvest processing, the non-destructive measurement of internal quality such as sugar content and firmness is becoming more important. Thus, more accurate quality measurement techniques are needed. The main goal of this research is to develop prediction models that can estimate soluble solids content (SSC) and firmness in strawberries and SSC in tomatoes using hyperspectral imaging in visible (VIS) and near-infrared (NIR).1.Strawberries1)A VIS liquid crystal tunable filter-based hyperspectral imaging that took images from 450 nm to 650 nm at 2-nm intervals was used to relate spectral reflectance data with firmness. In the technically ripe sample sets, the five-predictor firmness model (510, 650, 644, 628, and 598 nm) had an SEP of 0.364 and a correlation coefficient r of 0.784.2)Similarly, using NIR hyperspectral images (650-1000nm at 5-nm intervals) were taken to develop calibration models for firmness and SSC using stepwise multiple linear regression. The three-wavelength prediction model for firmness had a correlation of 0.786 and SEP of 0.350 (50% to Full-ripe group). While for SSC, the five-wavelength prediction model yielded a correlation of 0.870 and SEP of 0.530 (70% to Full-ripe group).2.TomatoesUsing NIR hyperspectral images from 650 nm to 1100 nm at 10-nm intervals calibration models were developed to relate the second derivative of the absorbance spectral data to the fruit's SSC. The five-wavelength model had a correlation coefficient r of 0.939 and SEC of 0.094 for the Full-ripe samples.Hyperspectral imaging was found very useful for the non-destructive estimation of internal quality of fruits and fruit-vegetables.Papers based on this research were chosen to receive the IET Select Paper Award during the international meetings of ASAE in 2004 and 2005.
消费者对农产品质量和安全性的要求越来越高。虽然外部食品质量检测现在更常见于收获后加工过程中,但对内部质量(如糖含量和硬度)的非破坏性测量变得越来越重要。因此,需要更精确的质量测量技术。本研究的主要目标是开发预测模型,该模型可以使用可见光(维斯)和近红外(NIR)中的高光谱成像来估计草莓中的可溶性固形物含量(SSC)和硬度以及番茄中的SSC。1.草莓1)基于维斯液晶可调谐滤波器的高光谱成像,其在2- 30 nm处拍摄450 nm至650 nm的图像。nm间隔用于将光谱反射率数据与硬度相关联。在技术成熟的样品组中,五个预测值硬度模型(510,650,644,628和598 nm)的SEP为0.364,相关系数r为0.784。2)类似地,使用NIR高光谱图像(650- 1000 nm,间隔5 nm),使用逐步多元线性回归建立硬度和SSC的校准模型。三波长预测模型的相关系数为0.786,SEP为0.350(50%对全熟组)。而对于可溶性固形物含量,五波长预测模型的相关系数为0.870,预测误差为0.530(70%)。2.番茄利用650 ~ 1100 nm、间隔10 nm的近红外高光谱图像,建立了吸收光谱数据二阶导数与可溶性固形物含量的校正模型。五波长模型的相关系数r为0.939,SEC为0.094。高光谱成像被认为是非常有用的水果和水果蔬菜的内部品质的无损评估。基于这项研究的论文被选为2004年和2005年ASAE国际会议期间的IET选择论文奖。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
近赤外分光法による温州ミカン (Citrus unshiu) の糖度計測法に関する基礎的研究
近红外光谱测定温州蜜糖含量的基础研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGATA Masateru其他文献

NAGATA Masateru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGATA Masateru', 18)}}的其他基金

Sturdy on Non-Destructive Measurement System using Hyperspectral Imaging for Strawberry and other fruits and vegetables.
使用高光谱成像对草莓和其他水果和蔬菜进行坚固的无损测量系统。
  • 批准号:
    18580261
  • 财政年份:
    2006
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Quality and Management on Agricultural Production in China
我国农业生产质量与管理研究
  • 批准号:
    11695081
  • 财政年份:
    1999
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Quality Estimation of fruit surface for Strawberry and Tomato in Wave of Near Infrared (NIR)
近红外(NIR)波下草莓和番茄果实表面品质评价研究
  • 批准号:
    11660256
  • 财政年份:
    1999
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Strawberry Sorting System with Precooling Function
具有预冷功能的草莓分选系统的研究
  • 批准号:
    08456129
  • 财政年份:
    1996
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
INTRODUCTION AND MECHANIZATION OF MULCHING CULTIVATION SYSTEM BY USING POLYETHELENE FILM FOR EARLY-SEASON CULTURE RICE
早稻聚乙烯薄膜覆盖栽培系统的引进及机械化
  • 批准号:
    05556044
  • 财政年份:
    1993
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Basic studies of Mechanism and Controlled Circulation on Automatic
自动控制循环机理及基础研究
  • 批准号:
    04660267
  • 财政年份:
    1992
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
  • 批准号:
    23H03766
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of education materials of spectral image data for the intuitive understanding of astrophysical spectroscopy with the use of the spectroscopic eyepiece system
开发光谱图像数据教育材料,以便利用光谱目镜系统直观地了解天体物理光谱学
  • 批准号:
    20K03244
  • 财政年份:
    2020
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise 3-D remote sensing using multi-spectral image estimation and accurate 3-D reconstruction
使用多光谱图像估计和精确的 3D 重建进行精确的 3D 遥感
  • 批准号:
    20K06319
  • 财政年份:
    2020
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated Model-Driven and Data-Driven Framework for Hyper-Spectral Image Super-Resolution
用于超光谱图像超分辨率的集成模型驱动和数据驱动框架
  • 批准号:
    20K11867
  • 财政年份:
    2020
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3D Measurement and AR application using spectral image
使用光谱图像的 3D 测量和 AR 应用
  • 批准号:
    19K12015
  • 财政年份:
    2019
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Skin modeling and apperance reproduction considering fine hair and pigment distribution with spectral image analysis
通过光谱图像分析考虑细毛和色素分布的皮肤建模和外观再现
  • 批准号:
    17K00255
  • 财政年份:
    2017
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Real-time Spectral Measurement using Programmable Light Source and Construction of Spectral Image Display System
可编程光源实时光谱测量及光谱图像显示系统的构建
  • 批准号:
    26870725
  • 财政年份:
    2014
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Framework for Preserving Salience through Perceptual Differences in Spectral Image Creation and Manipulation: From Scene to Display
通过光谱图像创建和操作中的感知差异保持显着性的框架:从场景到显示
  • 批准号:
    341828-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Discovery Grants Program - Individual
Framework for Preserving Salience through Perceptual Differences in Spectral Image Creation and Manipulation: From Scene to Display
通过光谱图像创建和操作中的感知差异保持显着性的框架:从场景到显示
  • 批准号:
    341828-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Discovery Grants Program - Individual
Framework for Preserving Salience through Perceptual Differences in Spectral Image Creation and Manipulation: From Scene to Display
通过光谱图像创建和操作中的感知差异保持显着性的框架:从场景到显示
  • 批准号:
    341828-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了