Spectral Analysis of infinite grapgs with discrete group actions
具有离散群作用的无限图形的谱分析
基本信息
- 批准号:16340013
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We discuss ed a long time behavior of periodic random walks on a crystal lattice in view of geometry, a large deviation property in particular, and relate it to a rational convex polyhedron in the first homology group of a finite graph, which, as remarkable combinatorial features,. A crystal lattice has a metric structure with the graph distance. By changing scale of the distance, we obtain a one-parameter family of metric spaces. The Gromov-Hausdorff limit of the sequence is called the asymptotic cone at the infinity of the crystal lattice. As the scale go to zero., because of the periodicity of the crystal lattice, the asymptotic cone exists and we determinded its unit ball explicitely in terms of combinatorial data.We also published a survey article on discrete geometric analysis of crystal lattice from Sugaku Expository, Amer.Math.Soc. In there, we discussed spectral properties and geometry of random walks on a crystal lattice, such as the law of large number, the central limit theorem, large deviation and spectrum of magnetic Schroedinger operators from non-commutative geometry.
从几何的角度讨论了晶格上周期随机游动的长时间行为,特别是大偏差性质,并将其与有限图的第一同调群中的有理凸多面体联系起来,作为显著的组合特征,.晶格具有具有图形距离的度规结构。通过改变距离的尺度,我们得到了一个单参数度量空间族。序列的Gromov-Hausdorff极限称为晶格无穷远处的渐近锥体。当尺度趋于零时,由于晶格的周期性,渐近圆锥的存在,我们用组合数据明确地确定了它的单位球。我们还发表了Sugaku说明书,amer.Math.Soc的一篇关于晶格离散几何分析的综述文章。在这里,我们讨论了晶格上随机游动的谱性质和几何性质,如大数定律、中心极限定理、大偏差和磁薛定谔算子与非对易几何的谱。
项目成果
期刊论文数量(102)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Volume collapsed three-manifolds with a lower curvature bound
- DOI:10.1007/s00208-005-0667-x
- 发表时间:2003-04
- 期刊:
- 影响因子:1.4
- 作者:T. Shioya;Takao Yamaguchi
- 通讯作者:T. Shioya;Takao Yamaguchi
A note on N. Konno's paper on quantum walk : "Continuous-time quantum walks on trees in quantum probability theory
N. Konno 关于量子行走的论文的注释:“量子概率论中树上的连续时间量子行走
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:N.Obata
- 通讯作者:N.Obata
Ourdiane, Habib Quantum Levy Laplacian and associated heat equation
Ourdiane、Habib Quantum Levy Laplacian 和相关热方程
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Ji;Un Cig; obata;Nobuaki
- 通讯作者:Nobuaki
Quantum probability and spectral analysis of graphs. With a foreword by Luigi Accardi
量子概率和图谱分析。
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:1
- 作者:Hora;Akihito; Obata;nobuaki
- 通讯作者:nobuaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOTANI Motoko其他文献
Mathematical Description for the Hierarchy of Grain-boundary Structures
晶界结构层次结构的数学描述
- DOI:
10.1380/vss.66.146 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
INOUE Kazutoshi;KOTANI Motoko;IKUHARA Yuichi - 通讯作者:
IKUHARA Yuichi
KOTANI Motoko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOTANI Motoko', 18)}}的其他基金
Mathematical approach to materials science by using non-commutative geometry
使用非交换几何的材料科学数学方法
- 批准号:
23654020 - 财政年份:2011
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of Geometry of a discrete space through randomness
通过随机性研究离散空间的几何
- 批准号:
20244002 - 财政年份:2008
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The standard realization of crystal lattices and spectra of magnetic transition operators
磁跃迁算子晶格和谱的标准实现
- 批准号:
14540057 - 财政年份:2002
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Large deviation estimates for occupation times of intermittent maps
间歇地图占用时间的大偏差估计
- 批准号:
23K19010 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
Large deviation principle and metastability for lattice gas
晶格气体大偏差原理及亚稳态
- 批准号:
22K13929 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DMS-EPSRC Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
随机流体动力系统波动的 DMS-EPSRC 急剧大偏差估计
- 批准号:
EP/V013319/1 - 财政年份:2021
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2021
- 资助金额:
$ 7.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
- 批准号:
2012510 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Large deviation techniques for model coarse graining
模型粗粒化的大偏差技术
- 批准号:
EP/T011866/1 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
- 批准号:
2012548 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Large deviation analysis of interacting systems of Brownian motions and random interlacements at positive temperature
正温度下布朗运动和随机交错相互作用系统的大偏差分析
- 批准号:
2273598 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Studentship
Efficient Algorithms Related to and Beyond the Large Deviation Technique
与大偏差技术相关及之外的高效算法
- 批准号:
1913163 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant