Research on periods, L-functions and automorphic forms

周期、L-函数和自守形式的研究

基本信息

  • 批准号:
    16340006
  • 负责人:
  • 金额:
    $ 10.25万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

Yoshida studied, in collaboration with T. Kashio, an p-adic analogue of absolute CM-period, which was introduced byYoshida in 1997. First we defined p-adic absolute period symbol in general. In the complex case, this symbol is conjectured to be equal to Shimura's period symbol. In the p-adic case, we have new features. If the prime ideal given in the base field splits completely, then we can predict the exact value of the p-adic absolute CM-period symbol. We can prove that this gives a refinement of a conjecture of Gross, which is a p-adic analogue of the Stark-Shintani conjecture. In the general case, we studied the relation of our symbol to the p-adic periods in detail. Yoshida studied the problem of generalizing the Shimura-Taniyama conjecture to an arbitrary motive and formulated a precise conjecture.Ikeda, in collaboration with Hiraga and Atsushi Ichino, formulated a conjecture relating the formal degree and the gamma factor of the adjoint L-function of a representation of a p-adic reductive group. They proved the conjecture in several interesting cases. Ikeda, aldo in collaboration with Ichino, gave a refinement of the Gross-Prasad conjecture, which concerns the restriction of a representation of an orthogonal group to a smaller orthogonal group. This conjecture has a very interesting form involving special values of L-functions.Hiraga studied L-packet which is basic in representation theory of an algebraic group over a p-adic field. He succeeded to determine the L-packets for SL(n) in collaboration with Hiroshi Saito. Fujii studied relations between Farey series and the Riemann hypothesis.
Yoshida与T.Kashio合作研究了绝对CM周期的p-进模拟,这是由Yoshida在1997年引入的。首先,我们定义了一般的p进绝对周期符号。在复数情况下,该符号被猜想为等于下村的周期符号。在p-addy的情况下,我们有了新的特征。如果基域中给出的素数理想完全分裂,则我们可以预测p进绝对CM周期符号的精确值。我们可以证明,这给出了Gross猜想的一个精化,该猜想是Stark-Shintani猜想的p-进类比。在一般情况下,我们详细地研究了我们的符号与p-进周期的关系。吉田研究了将Shimura-Taniyama猜想推广到任意动机的问题,并提出了一个精确的猜想。Ikeda与Hiraga和Atsushi Ichino合作,提出了一个关于p-进还原群表示的伴随L函数的形式度和伽马因子的猜想。他们在几个有趣的案例中证明了这个猜想。Ikeda,Aldo和Ichino合作,给出了Gross-Prasad猜想的一个改进,该猜想涉及到正交群的表示到更小的正交群的限制。这个猜想有一种非常有趣的形式,涉及到L函数的特殊值。Hiraga研究了L包,它是p-ady域上代数群表示理论的基础。他与斋藤博史合作,成功地确定了SL(N)的L包。藤井研究了费雷级数和黎曼假设之间的关系。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pullback of the lifting of elliptic modular forms and Miyawaki's conjacture
椭圆模形式提升的回调和宫胁猜想
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki;Yoshida;吉田 敬之;T.Ikeda;H.Yoshida;T.Ikeda
  • 通讯作者:
    T.Ikeda
Absolute CM-periods - Complex and P-adic
绝对 CM 周期 - 复数和 P 进数
Formal degrees and adjoint $\gamma$-factors
形式度数和伴随 $gamma$-因子
Zur Entartung schwach verzweigter Gruppenoperationen
集团运作的实施
Non-archimedean orbifolds covered by mumford curves
  • DOI:
    10.1090/s1056-3911-04-00384-4
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Fumiharu Kato
  • 通讯作者:
    Fumiharu Kato
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Hiroyuki其他文献

YOSHIDA Hiroyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Hiroyuki', 18)}}的其他基金

Photonic Properties of Liquid Crystal Blue Phases and their Application to Photonic Devices
液晶蓝相的光子特性及其在光子器件中的应用
  • 批准号:
    21860054
  • 财政年份:
    2009
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Research on the derivative of L-functions and automorphic forms
L-函数的导数和自守形式的研究
  • 批准号:
    21540014
  • 财政年份:
    2009
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the mechanism of ovarian cancer metastasis
阐明卵巢癌转移机制
  • 批准号:
    19791160
  • 财政年份:
    2007
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of New Chitin Continuous Producing Method from Crab Shell Using Sub-critical Water Treatment
亚临界水处理蟹壳连续生产甲壳素新方法的开发
  • 批准号:
    18360437
  • 财政年份:
    2006
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on special values and zeros of L-funcions and on automorphic forms
L-函数的特殊值和零点以及自守形式的研究
  • 批准号:
    13440007
  • 财政年份:
    2001
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conversion to Biodegradable Polylactic Acid and High Speed Methane Fermentation of Paper Manufacture Sludge with Sub-Critical Water Treatment
亚临界水处理造纸污泥转化为可生物降解聚乳酸和高速甲烷发酵
  • 批准号:
    13480180
  • 财政年份:
    2001
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conversion of waste fish meat to bio-degradable plastics poly lactic acid by sub-critcal water oxidation
亚临界水氧化将废鱼肉转化为可生物降解塑料聚乳酸
  • 批准号:
    10480147
  • 财政年份:
    1998
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Zero Emissions by Forming Networks among Various Production Processes in Different Types of Industries
通过在不同类型行业的各个生产过程之间形成网络来实现零排放
  • 批准号:
    09247107
  • 财政年份:
    1997
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
DEVELOPMENT OF COMPOSITE OF CHITOSAN AND DEXTRAN FOR SEPARATION OF PROTEINS AND ITS APPLICATION FOR INDUSTRIAL LARGE SCALE PROTEIN SEPARATION
壳聚糖与右旋糖酐复合蛋白质分离材料的研制及其在工业化大规模蛋白质分离中的应用
  • 批准号:
    07650926
  • 财政年份:
    1995
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on automorphic representations
自守表示研究
  • 批准号:
    06402001
  • 财政年份:
    1994
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Study of modulimap of degenerate families of algebraic curves and local signature arizing from automorphic form
代数曲线简并族模映射及自守形式局部签名的研究
  • 批准号:
    16540036
  • 财政年份:
    2004
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in Automorphic Form
自守形式的主题
  • 批准号:
    0355285
  • 财政年份:
    2004
  • 资助金额:
    $ 10.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了