Mathematical Study of the Nonlinear Partial Differential Equations Arising in the Statistical Mechanics
统计力学中非线性偏微分方程的数学研究
基本信息
- 批准号:16340047
- 负责人:
- 金额:$ 6.67万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we provided a unified analysis to the critical phenomena, arising in the solution to the partial differential equation provided with the nonlinearity due to the self-interaction and the non-equilibrium. We formulate the mathematical principle across the hierarchy to control several phenomena common to many nonlinear problems. These problems are the mean field of stationary turbulence in high energy and of gauge field, Ricci flow, nonlinear parabolic equations, self-interacting fluids, material-energy transport, tumor growth, and nonlinear thermodynamics. Among them, we formulated the system of chemotaxis, derived in the context of th the formation of spores of the cellular slime molds, as the fundamental equation of the material transport subject to the mass conservation and the decrease of the free energy in the thermodynamics called Smoluchowski-Poisson equation and clarified the quantized blowup mechanism by developing various new methods of analysis. Then, we obtained the notions of the blowup envelope, formulation of the stationary and non-stationary states by the dual variation, hierarchical control of the stationary states upon the non-stationary states, which motivates the study on the structure and the stability of the set of stationary solutions of phenomenological equations concerning the critical phenomena arising in the non-equilibrium thermodynamics, formation of sub-collapses and the collision of collapses in the mean field equation arising in the gauge theory and turbulent theory and the semilinear parabolic equation with the critical Sobolev exponent, deformed quantization in the nonlinear parabolic equation with non-local term and the normalized Ricci flow, and mass quantization in higher dimensions.
在本研究项目中,我们对偏微分方程解由于自相互作用和非平衡而产生的非线性提供了一个统一的分析。我们制定了跨层次的数学原理,以控制许多非线性问题中常见的几个现象。这些问题包括高能定常湍流和规范场的平均场、Ricci流、非线性抛物方程、自相互作用流体、物质-能量传输、肿瘤生长和非线性热力学。其中,我们根据细胞黏菌孢子的形成推导出趋化性系统,作为物质输运受质量守恒和自由能降低的热力学基本方程,称为Smoluchowski-Poisson方程,并通过发展各种新的分析方法阐明了量子化的膨胀机理。然后,我们得到了爆破包络的概念,定态和非定态的对偶变分公式,定态对非定态的分级控制,从而推动了关于非平衡热力学中的临界现象的唯象方程的定常解的结构和稳定性的研究,规范理论和湍流理论中平均场方程的次坍缩的形成和崩塌的碰撞,具有临界索勃列夫指数的半线性抛物型方程,含非局域项的非线性抛物型方程的形变量子化和归一化Ricci流,以及高维的质量量子化。
项目成果
期刊论文数量(156)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blow-up analysis for SU(3) Toda system
- DOI:10.1016/j.jde.2006.09.003
- 发表时间:2007-01
- 期刊:
- 影响因子:2.4
- 作者:H. Ohtsuka;Takashi Suzuki
- 通讯作者:H. Ohtsuka;Takashi Suzuki
Convergence analysis of trial free boundary methods for the two-dimensional filtration problem,
二维过滤问题的试验自由边界方法的收敛性分析,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Suzuki;T.;Tsuchiya;T.
- 通讯作者:T.
On the stability of contact discontinuity for compressible Navier-Stokes equations with free boundary
- DOI:10.18910/10064
- 发表时间:2004-03
- 期刊:
- 影响因子:0.4
- 作者:F. Huang;A. Matsumura;Xiaoding Shi
- 通讯作者:F. Huang;A. Matsumura;Xiaoding Shi
Local well-posednes for the Maxwell-Schr"odinger equation
Maxwell-Schr"odinger 方程的局部适定性
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Nakamura;et al.
- 通讯作者:et al.
A mathematical approach to Othmel-Stevens model
奥梅尔-史蒂文斯模型的数学方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Sato;et al.;A.Kubo et al.
- 通讯作者:A.Kubo et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Takashi其他文献
SUZUKI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Takashi', 18)}}的其他基金
Possible growth signal transduction between Th17 cells and breast cancer cells
Th17细胞和乳腺癌细胞之间可能的生长信号转导
- 批准号:
19K09065 - 财政年份:2019
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses on multiple factors related to evaluation of antioxidant function of northern berries
北方浆果抗氧化功能评价的多因素分析
- 批准号:
25292017 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and publicizing of the simple and low-priced drop-sizing system for dispersive two-phase flows utilizing an image sensor
利用图像传感器开发并宣传用于分散两相流的简单且低成本的液滴分级系统
- 批准号:
25420116 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-invasive quantitative in vivo optical imaging of cerebral blood flow and metabolism
脑血流和代谢的无创定量体内光学成像
- 批准号:
25870370 - 财政年份:2013
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on a system supporting visually impaired students in learning science and image-creation of scientific phenomena
支持视障学生学习科学和科学现象形象创作的系统研究
- 批准号:
24501163 - 财政年份:2012
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The research of acoustic diagnosis and noninvasive therapy for intractable pneumothorax
顽固性气胸的声学诊断及无创治疗研究
- 批准号:
23659307 - 财政年份:2011
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research on the rapid measurement of stability of a refrigerant having low global warming potential
低温室效应制冷剂稳定性快速测量研究
- 批准号:
22510094 - 财政年份:2010
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of sex hormone actions in noninvasive breast carcinoma
性激素在非浸润性乳腺癌中的作用分析
- 批准号:
22590305 - 财政年份:2010
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perspectives on the Chinese Political Regime on Taisho Period
大正时期中国政治体制透视
- 批准号:
20730110 - 财政年份:2008
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis for nonlinear critical phenomena described by mean field equations
平均场方程描述的非线性临界现象分析
- 批准号:
20340034 - 财政年份:2008
- 资助金额:
$ 6.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




