Exploitation of Computational Control Theory
计算控制理论的应用
基本信息
- 批准号:16360212
- 负责人:
- 金额:$ 3.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to exploit a new field for control theory called "Computational Control Theory" which gives numerical methods using computational power for obtaining sub-optimal solutions for control problems which are hardly solved theoretically. In this term of project the following results have been obtained.1. Iterative methods for obtaining sub-optimal numerical solutions to multi-objective control problems : For multi-objective control problems we have proposed a numerical method using sub-level sets, an exterior point method and a bi-section method, and show the effectiveness using some numerical examples.2. System identification methods for gray-box models : For parameter estimation problem for gray-box models we have given some numerical methods based upon SOS (sum of squares) optimization methods, and given a robustness analysis method.3. Robust control design methods for bi-linear systems : From the optimality condition for the L2 gain optimization problem in bi-linear systems Riccati-type inequalities including state variables are derived. For such inequalities we have given a numerical method based upon SOS (sum of squares) optimization methods to obtain a feasible solution.4. Numerical methods for input-saturated systems : For input-saturated systems we have proposed a new representation form using polynomials, and given numerical methods for obtaining feasible solutions to robust analysis/design problems for such systems.5. Parallel computing : We have constructed a PC cluster system for parallel computing, and applied it to solve some control design problems.
本研究项目的目的是开发控制理论的一个新领域,称为“计算控制理论”,它提供了利用计算能力获得理论难以解决的控制问题的次优解的数值方法。在这个项目期间,取得了以下成果:1。求解多目标控制问题次最优数值解的迭代方法:针对多目标控制问题,提出了子水平集法、外点法和双截面法,并通过数值算例说明了其有效性。灰盒模型的系统辨识方法:针对灰盒模型的参数估计问题,给出了基于平方和优化方法的数值方法,并给出了鲁棒性分析方法。双线性系统的鲁棒控制设计方法:从双线性系统L2增益优化问题的最优性条件出发,导出了包含状态变量的riccti型不等式。对于这类不等式,我们给出了一种基于平方和优化方法的数值求解方法。输入饱和系统的数值方法:对于输入饱和系统,我们提出了一种使用多项式的新表示形式,并给出了获得此类系统鲁棒分析/设计问题可行解的数值方法。并行计算:我们构建了一个并行计算的PC集群系统,并应用它解决了一些控制设计问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOBUYAMA Eitaku其他文献
NOBUYAMA Eitaku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOBUYAMA Eitaku', 18)}}的其他基金
Development of controller design methods using non-parametric system models represented by a finite number of frequency responses
使用由有限数量的频率响应表示的非参数系统模型开发控制器设计方法
- 批准号:
16K14286 - 财政年份:2016
- 资助金额:
$ 3.58万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of control system design methods for hybrid systems using constraint programming
使用约束规划开发混合系统的控制系统设计方法
- 批准号:
23656274 - 财政年份:2011
- 资助金额:
$ 3.58万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of control system design methods using sum-of-squares optimization and their applications to related fields
利用平方和优化的控制系统设计方法的发展及其在相关领域的应用
- 批准号:
19360192 - 财政年份:2007
- 资助金额:
$ 3.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2022
- 资助金额:
$ 3.58万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
- 批准号:
RGPIN-2019-04067 - 财政年份:2022
- 资助金额:
$ 3.58万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
- 批准号:
544900-2019 - 财政年份:2022
- 资助金额:
$ 3.58万 - 项目类别:
Alliance Grants
Clustering and semi-supervised learning on large heterogeneous graphs: Mathematical formulations and numerical optimization algorithms
大型异构图上的聚类和半监督学习:数学公式和数值优化算法
- 批准号:
569398-2022 - 财政年份:2022
- 资助金额:
$ 3.58万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploiting Structure and Hidden Convexity in Hard, Large Scale Numerical Optimization
在困难的大规模数值优化中利用结构和隐藏凸性
- 批准号:
RGPIN-2018-04028 - 财政年份:2021
- 资助金额:
$ 3.58万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization of Richardson-Gaudin Wavefunctions
Richardson-Gaudin 波函数的数值优化
- 批准号:
562836-2021 - 财政年份:2021
- 资助金额:
$ 3.58万 - 项目类别:
University Undergraduate Student Research Awards
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
- 批准号:
RGPIN-2019-04067 - 财政年份:2021
- 资助金额:
$ 3.58万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
- 批准号:
544900-2019 - 财政年份:2021
- 资助金额:
$ 3.58万 - 项目类别:
Alliance Grants
Numerical Optimization, Formulations and Algorithms, for Machine Learning
用于机器学习的数值优化、公式和算法
- 批准号:
RGPIN-2019-04067 - 财政年份:2020
- 资助金额:
$ 3.58万 - 项目类别:
Discovery Grants Program - Individual
Numerical Optimization and Machine Learning
数值优化和机器学习
- 批准号:
544900-2019 - 财政年份:2020
- 资助金额:
$ 3.58万 - 项目类别:
Alliance Grants














{{item.name}}会员




