Research on derivations of Bayes estimators with decision-theoretical optimality and their applications
决策理论最优性贝叶斯估计量的推导及其应用研究
基本信息
- 批准号:16500172
- 负责人:
- 金额:$ 2.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The usefulness of the Bayesian procedures has been recently recognized from practical aspects. In this research project, I have shown the optimality of the Bayesian procedures from a decision-theoretic view point in several statistical problems as well as the usefulness in applications. The details are given below:1) In the estimation of a mean vector of a multivariate normal distribution, the characterization of the prior distributions has been given so that the resulting Bayes estimator is minimax and/or admissible. When the prior distribution has a hierarchical structure, I have derived conditions under which the hierarchical Bayes estimators are minimax.2) In the estimation of the component of covariance matrix in a multivariate linear mixed model, I have established a unified theory for the improvement through the truncated method. This problem is related to the estimation of the covariance matrices under the inequality restriction. I have considered several estimation problems under parametric restrictions and have shown the dominance results of Bayesian estimators. Also I have obtained the empirical Bayes estimator of the covariance matrix in the high dimensional cases and shown the theoretical optimality as well as the practical usefulness in data analysis.3) In the nested error regression model, I have derived the information criterion for selecting explanatory variables. This model is useful in the small area problem, and I have constructed an asymptotically corrected confidence interval of the small area mean and an asymptotically corrected test statistic for the linear hypothesis.
贝叶斯程序的实用性最近已从实践方面得到承认。在这个研究项目中,我已经从决策理论的角度在几个统计问题以及在应用中的有用性贝叶斯程序的最优性。1)在多元正态分布均值向量的估计中,给出了先验分布的特征,使得得到的Bayes估计是极小极大和/或可容许的。当先验分布具有分层结构时,本文给出了分层Bayes估计为极小极大的条件。2)在多元线性混合模型协方差阵分量的估计中,本文建立了用截尾法改进的统一理论。这个问题涉及到不等式约束下协方差矩阵的估计。我已经考虑了参数限制下的几个估计问题,并显示了贝叶斯估计的优势结果。在高维情形下,得到了协方差阵的经验Bayes估计,证明了理论上的最优性以及在数据分析中的实用性。3)在嵌套误差回归模型中,推导了选择解释变量的信息准则。该模型在小区域问题中是有用的,并且我构造了小区域均值的渐近校正置信区间和线性假设的渐近校正检验统计量。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation in a linear regression model under the Kullback-Leibler loss and its application to model selection
Kullback-Leibler 损失下线性回归模型的估计及其在模型选择中的应用
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Mostafa Al Masum Shaikh;Helmut Prendinger;Mitsuru Ishizuka;和泉 諭;T.Kubokawa and H.Tsukuma
- 通讯作者:T.Kubokawa and H.Tsukuma
Linear Mixed Model and Small Area Estimation
线性混合模型和小面积估计
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.Kubokawa;M.S.Srivastava;T.Kubokawa;久保川 達也;T. Kubokawa
- 通讯作者:T. Kubokawa
Minimax multivariate empirical Bayes estimators under multicollinearlity
多重共线性下的极小极大多元经验贝叶斯估计
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Kubokawa;M.-T.Tsai(共著);久保川 達也;M.S. Srivastava(共著);M. S. Srivastava and T. Kubokawa
- 通讯作者:M. S. Srivastava and T. Kubokawa
Estimation of covariance matrices in fixed and mixed effects linear models
固定效应和混合效应线性模型中协方差矩阵的估计
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Kubokawa;M.-T.Tsai
- 通讯作者:M.-T.Tsai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUBOKAWA Tatsuya其他文献
KUBOKAWA Tatsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUBOKAWA Tatsuya', 18)}}的其他基金
New developments of theories in multivariate statistical inference and their applications
多元统计推断理论新进展及其应用
- 批准号:
21540114 - 财政年份:2009
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESARCH ON NEW DEVELOPMENTS OF ESTIMATION THEORY AND THEIR APPLICATIONS IN MULTI-DIMENSIONAL STATISTICAL MODELS
估计理论新进展及其在多维统计模型中的应用研究
- 批准号:
13680371 - 财政年份:2001
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESARCH ON THE THEORY AND APPLICATIONS OF EFFICIENT BAYES ESTIMATORS IN MULTIVARIATE STATISTICAL MODELS
多元统计模型中有效贝叶斯估计量的理论与应用研究
- 批准号:
11680320 - 财政年份:1999
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Projects
Mostly Harmless Statistical Decision Theory
基本无害的统计决策理论
- 批准号:
2315600 - 财政年份:2023
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
- 批准号:
1534545 - 财政年份:2015
- 资助金额:
$ 2.41万 - 项目类别:
Standard Grant
New Horizons in Statistical Decision Theory
统计决策理论的新视野
- 批准号:
1407600 - 财政年份:2014
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
Collaborative Research: Applications of Asymptotic Statistical Decision Theory in Econometrics
协作研究:渐近统计决策理论在计量经济学中的应用
- 批准号:
0962488 - 财政年份:2010
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
Collaborative Research: Applications of Asymptotic Statistical Decision Theory in Econometrics
协作研究:渐近统计决策理论在计量经济学中的应用
- 批准号:
0962422 - 财政年份:2010
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
- 批准号:
0645676 - 财政年份:2007
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
New Development of Applied Statistical Decision Theory -Application of Multidimentional Large Deviation Theory
应用统计决策理论的新进展——多维大偏差理论的应用
- 批准号:
14380125 - 财政年份:2002
- 资助金额:
$ 2.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: Investigations in Bayesian Analysis,Statistical Decision Theory, and Computation
数学科学:贝叶斯分析、统计决策理论和计算研究
- 批准号:
9303556 - 财政年份:1993
- 资助金额:
$ 2.41万 - 项目类别:
Continuing Grant
Developments in statistical decision theory and multivariate analysis
统计决策理论和多元分析的发展
- 批准号:
97303-1989 - 财政年份:1991
- 资助金额:
$ 2.41万 - 项目类别:
Discovery Grants Program - Individual